Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.nansum() in Python
Next article icon

numpy.nanvar() in Python

Last Updated : 03 Dec, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.nanvar(arr, axis = None) : Compute the variance of the given data (array elements) along the specified axis(if any), while ignoring NaN values. Example :
x = 1 1 1 1 1 Standard Deviation = 0 . Variance = 0 y = 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4 Step 1 : Mean of distribution 4 = 7 Step 2 : Summation of (x - x.mean())**2 = 178 Step 3 : Finding Mean = 178 /20 = 8.9 This Result is Variance.
Parameters : arr : [array_like] input array. axis : [int or tuples of int]axis along which we want to calculate the variance. Otherwise, it will consider arr to be flattened (works on all the axis). axis = 0 means variance along the column and axis = 1 means variance along the row. out : [ndarray, optional]Different array in which we want to place the result. The array must have the same dimensions as expected output. dtype : [data-type, optional]Type we desire while computing variance. Results : Variance of the array (a scalar value if axis is none) or array with variance values along specified axis; while ignoring NaN values.
Code #1: Python3 1==
# Python Program illustrating  # numpy.nanvar() method  import numpy as np       # 1D array  arr = [20, 2, np.nan, 1, 34]   print("arr : ", arr)  print("\nnanvar of arr : ", np.nanvar(arr))   print("var of arr : ", np.var(arr))   print("\nnanvar of arr : ", np.nanvar(arr, dtype = np.float32))  print("var of arr : ", np.var(arr, dtype = np.float32))    
Output :
  arr :  [20, 2, nan, 1, 34]    nanvar of arr :  187.1875  var of arr :  nan    nanvar of arr :  187.1875  var of arr :  nan
  Code #2: Python3 1==
# Python Program illustrating  # numpy.nanvar() method  import numpy as np        # 2D array  arr = [[2, 2, 2, 2, 2],      [15, 6, np.nan, 8, 2],      [23, 2, 54, 1, 2, ],      [np.nan, 44, 34, 7, 2]]        # nanvar of the flattened array  print("\nnanvar of arr, axis = None : ", np.nanvar(arr))   print("\nvar of arr, axis = None : ", np.var(arr))        # nanvar along the axis = 0  print("\nnanvar of arr, axis = 0 : \n", np.nanvar(arr, axis = 0))   print("\nvar of arr, axis = 0 : ", np.var(arr, axis = 0))   # nanvar along the axis = 1  print("\nnanvar of arr, axis = 1 : ", np.nanvar(arr, axis = 1))  
Output :
  nanvar of arr, axis = None :  249.88888888888889    var of arr, axis = None :  nan    nanvar of arr, axis = 0 :    [ 74.88888889 312.75       458.66666667   9.25         0.        ]    var of arr, axis = 0 :  [   nan 312.75    nan   9.25   0.  ]    nanvar of arr, axis = 1 :  [  0.      22.1875 421.84   313.1875]

Next Article
numpy.nansum() in Python
author
mohit gupta_omg :)
Improve
Article Tags :
  • Python
  • Python-numpy
  • Python numpy-Statistics Functions
Practice Tags :
  • python

Similar Reads

  • numpy.nanprod() in Python
    numpy.nanprod() function is used when we want to compute the product of array elements over a given axis treating NaNs as ones. One is returned for slices that are all-NaN or empty. Syntax : numpy.nanprod(arr, axis=None, dtype=None, out=None, keepdims='class numpy._globals._NoValue'). Parameters : a
    2 min read
  • numpy.nanargmin() in Python
    The numpy.nanargmin() function returns indices of the min element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs.  Syntax:   numpy.nanargmin(array, axis = None) Parameters :  array : Input array to work on axis : [int, optional]A
    2 min read
  • numpy.nanargmax() in Python
    The numpy.nanargmax() function returns indices of the max element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs.  Syntax:  numpy.nanargmax(array, axis = None) Parameters :  array : Input array to work on axis : [int, optional]Al
    2 min read
  • numpy.isnan() in Python
    The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax :  numpy.isnan(array [, out]) Parameters :  array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed wit
    2 min read
  • numpy.nansum() in Python
    numpy.nansum()function is used when we want to compute the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. Syntax : numpy.nansum(arr, axis=None, dtype=None, out=None, keepdims='no value') Parameters : arr : [array_like] Array containing numbers whose sum is desired. If
    3 min read
  • numpy.nanmin() in Python
    numpy.nanmin()function is used when to returns minimum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmin(arr, axis=None, out=None) Parameters : arr :Input array. axis :Axis along which we want the min value. Otherwise, it will consider
    2 min read
  • numpy.invert() in Python
    numpy.invert() function is used to Compute the bit-wise Inversion of an array element-wise. It computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. For signed integer inputs, the two’s complement is returned. In a two’s-complement system negative num
    2 min read
  • numpy.nonzero() in Python
    numpy.nonzero()function is used to Compute the indices of the elements that are non-zero. It returns a tuple of arrays, one for each dimension of arr, containing the indices of the non-zero elements in that dimension. The corresponding non-zero values in the array can be obtained with arr[nonzero(ar
    2 min read
  • numpy.nancumprod() in Python
    numpy.nancumprod() function is used when we want to compute the cumulative product of array elements over a given axis treating Not a Numbers (NaNs) as one. The cumulative product does not change when NaNs are encountered and leading NaNs are replaced by ones. Ones are returned for slices that are a
    3 min read
  • numpy.negative() in Python
    numpy.negative() function is used when we want to compute the negative of array elements. It returns element-wise negative value of an array or negative value of a scalar. Syntax : numpy.negative(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, ext
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences