numpy.nanpercentile() in Python
Last Updated : 09 Aug, 2022
numpy.nanpercentile()function used to compute the nth percentile of the given data (array elements) along the specified axis and ignores nan values.
Syntax :
numpy.nanpercentile(arr, q, axis=None, out=None)
Parameters :
- arr :input array.
- q : percentile value.
- axis :axis along which we want to calculate the percentile value.Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0 means along the column and axis = 1 means working along the row.
- out : Different array in which we want to place the result. The array must have same dimensions as expected output.
Return :Percentile of the array (a scalar value if axis is none) or array with percentiles of values along specified axis.
Code #1 : Working
Python # Python Program illustrating # numpy.nanpercentile() method import numpy as np # 1D array arr = [20, 2, 7, np.nan, 34] print("arr : ", arr) print("50th percentile of arr : ", np.percentile(arr, 50)) print("25th percentile of arr : ", np.percentile(arr, 25)) print("75th percentile of arr : ", np.percentile(arr, 75)) print("\n50th percentile of arr : ", np.nanpercentile(arr, 50)) print("25th percentile of arr : ", np.nanpercentile(arr, 25)) print("75th percentile of arr : ", np.nanpercentile(arr, 75))
Output :
arr : [20, 2, 7, nan, 34] 50th percentile of arr : nan 25th percentile of arr : nan 75th percentile of arr : nan 50th percentile of arr : 13.5 25th percentile of arr : 5.75 75th percentile of arr : 23.5
Code #2 :
Python # Python Program illustrating # numpy.nanpercentile() method import numpy as np # 2D array arr = [[14, np.nan, 12, 33, 44], [15, np.nan, 27, 8, 19], [23, 2, np.nan, 1, 4, ]] print(& quot \narr: \n" , arr) # Percentile of the flattened array print(& quot \n50th Percentile of arr, axis = None : & quot , np.percentile(arr, 50)) print(& quot \n50th Percentile of arr, axis = None : & quot , np.nanpercentile(arr, 50)) print(& quot 0th Percentile of arr, axis = None : & quot , np.nanpercentile(arr, 0)) # Percentile along the axis = 0 print(& quot \n50th Percentile of arr, axis = 0 : & quot , np.nanpercentile(arr, 50, axis=0)) print(& quot 0th Percentile of arr, axis = 0 : & quot , np.nanpercentile(arr, 0, axis=0)) # Percentile along the axis = 1 print(& quot \n50th Percentile of arr, axis = 1 : & quot , np.nanpercentile(arr, 50, axis=1)) print(& quot 0th Percentile of arr, axis = 1 : & quot , np.nanpercentile(arr, 0, axis=1)) print(& quot \n0th Percentile of arr, axis = 1: \n" , np.nanpercentile(arr, 50, axis=1, keepdims=True)) print(& quot \n0th Percentile of arr, axis = 1: \n" , np.nanpercentile(arr, 0, axis=1, keepdims=True))
Output :
arr : [[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, 2, nan, 1, 4]] 50th Percentile of arr, axis = None : nan 50th Percentile of arr, axis = None : 14.5 0th Percentile of arr, axis = None : 1.0 50th Percentile of arr, axis = 0 : [15. 2. 19.5 8. 19. ] 0th Percentile of arr, axis = 0 : [14. 2. 12. 1. 4.] 50th Percentile of arr, axis = 1 : [23.5 17. 3. ] 0th Percentile of arr, axis = 1 : [12. 8. 1.] 0th Percentile of arr, axis = 1 : [[23.5] [17. ] [ 3. ]] 0th Percentile of arr, axis = 1 : [[12.] [ 8.] [ 1.]]
Code #3:
Python # Python Program illustrating # numpy.nanpercentile() method import numpy as np # 2D array arr = [[14, np.nan, 12, 33, 44], [15, np.nan, 27, 8, 19], [23, np.nan, np.nan, 1, 4, ]] print(& quot \narr: \n" , arr) # Percentile along the axis = 1 print(& quot \n50th Percentile of arr, axis = 1 : & quot , np.nanpercentile(arr, 50, axis=1)) print(& quot \n50th Percentile of arr, axis = 0 : & quot , np.nanpercentile(arr, 50, axis=0))
Output :
arr : [[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, nan, nan, 1, 4]] 50th Percentile of arr, axis = 1 : [23.5 17. 4. ] 50th Percentile of arr, axis = 0 : [15. nan 19.5 8. 19. ] RuntimeWarning: All-NaN slice encountered overwrite_input, interpolation)
Similar Reads
numpy.nanquantile() in Python numpy.nanquantile(arr, q, axis = None) : Compute the qth quantile of the given data (array elements) along the specified axis, ignoring the nan values. Quantiles plays a very important role in statistics. In the figure given above, Q2 is the median and Q3 - Q1 represents the Interquartile Range of
4 min read
numpy.nanprod() in Python numpy.nanprod() function is used when we want to compute the product of array elements over a given axis treating NaNs as ones. One is returned for slices that are all-NaN or empty. Syntax : numpy.nanprod(arr, axis=None, dtype=None, out=None, keepdims='class numpy._globals._NoValue'). Parameters : a
2 min read
numpy.nanmin() in Python numpy.nanmin()function is used when to returns minimum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmin(arr, axis=None, out=None) Parameters : arr :Input array. axis :Axis along which we want the min value. Otherwise, it will consider
2 min read
numpy.nanvar() in Python numpy.nanvar(arr, axis = None) : Compute the variance of the given data (array elements) along the specified axis(if any), while ignoring NaN values. Example : x = 1 1 1 1 1 Standard Deviation = 0 . Variance = 0 y = 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4 Step 1 : Mean of dist
3 min read
numpy.nanargmin() in Python The numpy.nanargmin() function returns indices of the min element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs. Syntax:  numpy.nanargmin(array, axis = None) Parameters : array : Input array to work on axis : [int, optional]A
2 min read