Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.argmax() in Python
Next article icon

numpy.maximum() in Python

Last Updated : 28 Nov, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report

numpy.maximum() function is used to find the element-wise maximum of array elements.

It compares two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned.

Syntax : numpy.maximum(arr1, arr2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, ufunc ‘maximum’)

Parameters :
arr1 : [array_like] Input array.
arr2 : [array_like] Input array.
out : [ndarray, optional] A location into which the result is stored.
  -> If provided, it must have a shape that the inputs broadcast to.
  -> If not provided or None, a freshly-allocated array is returned.
**kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.

Return : [ndarray or scalar] Result.
The maximum of arr1 and arr2, element-wise. This is a scalar if both arr1 and arr2 are scalars.

Code #1 : Working




# Python program explaining
# maximum() function
  
import numpy as geek
in_num1 = 10
in_num2 = 21
  
print ("Input  number1 : ", in_num1)
print ("Input  number2 : ", in_num2) 
    
out_num = geek.maximum(in_num1, in_num2) 
print ("maximum of 10 and 21 : ", out_num) 
 
 

Output :

Input  number1 :  10  Input  number2 :  21  maximum of 10 and 21 :  21  

 
Code #2 :




# Python program explaining
# maximum() function
  
import numpy as geek
  
in_arr1 = [2, 8, 125]
in_arr2 = [3, 3, 15]
   
print ("Input array1 : ", in_arr1) 
print ("Input array2 : ", in_arr2)
    
out_arr = geek.maximum(in_arr1, in_arr2) 
print ("Output array after selecting maximum: ", out_arr) 
 
 

Output :

Input array1 :  [2, 8, 125]  Input array2 :  [3, 3, 15]  Output array after selecting maximum:  [  3   8 125]  

 
Code #3 :




# Python program explaining
# maximum() function
  
import numpy as geek
  
in_arr1 = [geek.nan, 0, geek.nan]
in_arr2 = [geek.nan, geek.nan, 0]
   
print ("Input array1 : ", in_arr1) 
print ("Input array2 : ", in_arr2)
    
out_arr = geek.maximum(in_arr1, in_arr2) 
print ("Output array after selecting maximum: ", out_arr) 
 
 

Output :

Input array1 :  [nan, 0, nan]  Input array2 :  [nan, nan, 0]  Output array after selecting maximum:  [ nan  nan  nan]  


Next Article
numpy.argmax() in Python
author
jana_sayantan
Improve
Article Tags :
  • Python
  • Python numpy-Mathematical Function
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • numpy.fmax() in Python
    numpy.fmax() function is used to compute element-wise maximum of array elements. This function compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first
    2 min read
  • numpy.nanargmax() in Python
    The numpy.nanargmax() function returns indices of the max element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs. Syntax: numpy.nanargmax(array, axis = None) Parameters : array : Input array to work on axis : [int, optional]Along
    2 min read
  • numpy.amax() in Python
    The numpy.amax() method returns the maximum of an array or maximum along the axis(if mentioned). Syntax: numpy.amax(arr, axis = None, out = None, keepdims = <class numpy._globals._NoValue>) Parameters - arr : [array_like] input dataaxis : [int or tuples of int] axis along which we want the max
    2 min read
  • numpy.maximum_sctype() function – Python
    numpy.maximum_sctype() function return the scalar type of highest precision of the same kind as the input. Syntax : numpy.maximum_sctype(t) Parameters : t : [dtype or dtype specifier] The input data type. This can be a dtype object or an object that is convertible to a dtype. Return : [dtype] The hi
    1 min read
  • numpy.argmax() in Python
    The numpy.argmax() function returns indices of the max element of the array in a particular axis. Syntax : numpy.argmax(array, axis = None, out = None) Parameters : array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to ins
    3 min read
  • np.nanmax() in Python
    numpy.nanmax()function is used to returns maximum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmax(arr, axis=None, out=None, keepdims = no value) Parameters : arr : Input array. axis : Axis along which we want the max value. Otherwise
    2 min read
  • numpy.argmin() in Python
    The numpy.argmin() method returns indices of the min element of the array in a particular axis. Syntax : numpy.argmin(array, axis = None, out = None) Parameters : array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to inser
    2 min read
  • Find Maximum of two numbers in Python
    Finding the maximum of two numbers in Python helps determine the larger of the two values. For example, given two numbers a = 7 and b = 3, you may want to extract the larger number, which in this case is 7. Let's explore different ways to do this efficiently. Using max()max() function is the most op
    2 min read
  • sys.maxint in Python
    In Python 2, sys.maxint refers to the maximum value an integer can hold on a given platform. This value is: 2³¹ - 1 = 2147483647 on a 32-bit system2⁶³ - 1 = 9223372036854775807 on a 64-bit systemsys.maxint was typically used as a very large number in algorithms requiring an upper bound, like finding
    3 min read
  • max() and min() in Python
    This article brings you a very interesting and lesser-known function of Python, namely max() and min(). Now when compared to their C++ counterpart, which only allows two arguments, that too strictly being float, int or char, these functions are not only limited to 2 elements, but can hold many eleme
    3 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences