Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy matrix operations | rand() function
Next article icon

numpy matrix operations | rand() function

Last Updated : 21 Feb, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.matlib.rand() is another function for doing matrix operations in numpy. It returns a matrix of random values from a uniform distribution over [0, 1) with given shape.
Syntax : numpy.matlib.rand(*args) Parameters : *args : [Arguments] Shape of the output matrix. If given as N integers, each integer specifies the size of one dimension. If given as a tuple, this tuple gives the complete shape. If there are more than one argument and the first argument is a tuple then other arguments are ignored. Return : The matrix of random values.
Code #1 : Python3
# Python program explaining # numpy.matlib.rand() function  # importing matrix library from numpy import numpy as geek import numpy.matlib  # desired 3 x 4 random output matrix  out_mat = geek.matlib.rand((3, 4))  print ("Output matrix : ", out_mat)  
Output :
  Output matrix :  [[ 0.37976085  0.68700838  0.83898103  0.72073804]   [ 0.80577587  0.2508264   0.30179229  0.81376797]   [ 0.70202528  0.17830863  0.61509844  0.27758369]]  
  Code #2 : Python3
# Python program explaining # numpy.matlib.rand() function  # importing numpy and matrix library import numpy as geek import numpy.matlib  # desired 1 x 5 random output matrix  out_mat = geek.matlib.rand(5)  print ("Output matrix : ", out_mat)  
Output :
  Output matrix :  [[ 0.56138247  0.97881105  0.53380995  0.27486091  0.1603695 ]]  
  Code #3 : Python3
# Python program explaining # numpy.matlib.rand() function  # importing numpy and matrix library import numpy as geek import numpy.matlib  # more than one argument given out_mat = geek.matlib.rand((5, 3), 4)  print ("Output matrix : ", out_mat)  
Output :
  Output matrix :  [[ 0.86770893  0.35628104  0.19744129]   [ 0.90376689  0.58349554  0.9830152 ]   [ 0.64711739  0.09531791  0.17555793]   [ 0.66141287  0.09164568  0.28818979]   [ 0.92225364  0.56779388  0.58498534]]  

Next Article
numpy matrix operations | rand() function

J

jana_sayantan
Improve
Article Tags :
  • Python
  • Python-numpy
  • Python numpy-Matrix Function
Practice Tags :
  • python

Similar Reads

    numpy matrix operations | randn() function
    numpy.matlib.randn() is another function for doing matrix operations in numpy. It returns a matrix of random values from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1. Syntax : numpy.matlib.randn(*args) Parameters : *args : [Arguments] Shape of the output matrix. If given as
    2 min read
    numpy matrix operations | repmat() function
    numpy.matlib.repmat() is another function for doing matrix operations in numpy. It returns Repeat a 0-D, 1-D or 2-D array or matrix M x N times. Syntax : numpy.matlib.repmat(a, m, n) Parameters : a : [array_like] The input array or matrix which to be repeated. m, n : [int] The number of times a is r
    2 min read
    numpy matrix operations | eye() function
    numpy.matlib.eye() is another function for doing matrix operations in numpy. It returns a matrix with ones on the diagonal and zeros elsewhere. Syntax : numpy.matlib.eye(n, M=None, k=0, dtype='float', order='C') Parameters : n : [int] Number of rows in the output matrix. M : [int, optional] Number o
    2 min read
    numpy matrix operations | ones() function
    numpy.matlib.ones() is another function for doing matrix operations in numpy. It returns a matrix of given shape and type, filled with ones. Syntax : numpy.matlib.ones(shape, dtype=None, order='C') Parameters : shape : [int, int] Number of rows and columns in the output matrix.If shape has length on
    2 min read
    numpy matrix operations | identity() function
    numpy.matlib.identity() is another function for doing matrix operations in numpy. It returns a square identity matrix of given input size. Syntax : numpy.matlib.identity(n, dtype=None) Parameters : n : [int] Number of rows and columns in the output matrix. dtype : [optional] Desired output data-type
    1 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences