Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
Numpy MaskedArray.flatten() function | Python
Next article icon

Numpy MaskedArray.flatten() function | Python

Last Updated : 03 Oct, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.MaskedArray.flatten() function is used to return a copy of the input masked array collapsed into one dimension.
Syntax : numpy.ma.flatten(order='C') Parameters: order : [‘C’, ‘F’, ‘A’, ‘K’, optional] Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the C/Fortran ordering from a. The default is ‘C’. Return : [ ndarray] A copy of the input array, flattened to one dimension.
Code #1 : Python3
# Python program explaining # numpy.MaskedArray.flatten() method     # importing numpy as geek   # and numpy.ma module as ma  import numpy as geek  import numpy.ma as ma     # creating input array of 2 * 2   in_arr = geek.array([[10, 20], [-10, 40]])  print ("Input array : ", in_arr)     # Now we are creating a masked array  # by making one entry as invalid.   mask_arr = ma.masked_array(in_arr, mask =[[ 1, 0], [ 0, 0]])  print ("Masked array : ", mask_arr)     # applying MaskedArray.flatten methods to make   # it a 1D flattened array out_arr = mask_arr.flatten()  print ("Output flattened masked array : ", out_arr)  
Output:
  Input array :  [[ 10  20]   [-10  40]]  Masked array :  [[-- 20]   [-10 40]]  Output flattened masked array :  [-- 20 -10 40]  
  Code #2 : Python3
# Python program explaining # numpy.MaskedArray.flatten() method     # importing numpy as geek   # and numpy.ma module as ma  import numpy as geek  import numpy.ma as ma     # creating input array  in_arr = geek.array([[[ 2e8, 3e-5]], [[ -4e-6, 2e5]]]) print ("Input array : ", in_arr)     # Now we are creating a masked array  # by making one entry as invalid.   mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]])  print ("Masked array : ", mask_arr)     # applying MaskedArray.flatten methods to make   # it a 1D masked array out_arr = mask_arr.flatten(order ='F')  print ("Output flattened masked array : ", out_arr) 
Output:
  Input array :  [[[ 2.e+08  3.e-05]]     [[-4.e-06  2.e+05]]]  Masked array :  [[[-- 3e-05]]     [[-4e-06 200000.0]]]  Output flattened masked array :  [-- -4e-06 3e-05 200000.0]    

Next Article
Numpy MaskedArray.flatten() function | Python

J

jana_sayantan
Improve
Article Tags :
  • Python
  • Python-numpy
  • Python numpy-arrayManipulation
Practice Tags :
  • python

Similar Reads

    Numpy MaskedArray.any() function | Python
    In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra
    3 min read
    Numpy MaskedArray.astype() function | Python
    In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra
    2 min read
    Numpy MaskedArray.anom() function | Python
    In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra
    2 min read
    Numpy MaskedArray.all() function | Python
    In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays. Masked arrays are arr
    3 min read
    Numpy MaskedArray.dot() function | Python
    numpy.MaskedArray.dot() function is used to calculate the dot product of two mask arrays. Syntax : numpy.ma.dot(arr1, arr2, strict=False) Parameters: arr1, arr2:[ ndarray] Inputs arrays. strict : [bool, optional] Whether masked data are propagated (True) or set to 0 (False) for the computation. Defa
    3 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences