Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.isinf() in Python
Next article icon

numpy.isinf() in Python

Last Updated : 21 Jun, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

numpy.isinf() test element-wise whether a value is positive or negative infinity. It returns a Boolean array with True where the input is either +inf or -inf and False otherwise. Example:

Python
import numpy as np a = np.array([1, np.inf, -np.inf, 0, np.nan]) res = np.isinf(a) print(res) 

Output
[False  True  True False False] 

Explanation: np.isinf() checks each element in array a for positive or negative infinity, returning True for infinite values and False for all others, including numbers and np.nan.

Syntax

numpy.isinf(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Parameter:

Parameter

Description

x

Input array or scalar

out

A location where the result is stored (optional)

where

Condition over input array for performing the check (optional)

Returns: A Boolean array of the same shape as x, with True at positions where the element is infinite (inf or -inf) and False elsewhere.

Examples

Example 1: In this example, we check for positive (np.inf) and negative infinity (-np.inf) and return True for both and False for all other values, including nan.

Python
import numpy as np a = np.array([1, np.inf, -np.inf, 0, np.nan]) res = np.isinf(a) print(res) 

Output
[False  True  True False False] 

Explanation: np.isinf() check each element in array a for positive or negative infinity. It returns True for infinite values and False for others, including numbers and np.nan.

Example 2: In this example, we divide 1.0 by each element of the array. Division by zero gives np.inf, and np.isinf() returns True only for that value.

Python
import numpy as np a = np.array([1.0, 0.0, -1.0]) b = 1.0 / a res = np.isinf(b) print(b) print(res) 

Output

[ 1. inf -1.]
[False True False]

Explanation: Division by 0.0 produces inf. np.isinf() detects that and marks only that value as True.

Example 3: In this example, we filter out positive and negative infinity using ~np.isinf() and return only the finite values.

Python
import numpy as np a = np.array([10, np.inf, -np.inf, 20]) res = a[~np.isinf(a)] print(res) 

Output
[10. 20.] 

Explanation: We use the bitwise NOT (~) to reverse the Boolean mask from np.isinf(), keeping only non-infinite values.

Example 4: In this example, we use the out and where parameters to store the result in a separate array and check for infinity only where the values are not zero.

Python
import numpy as np a = np.array([np.inf, 2, 0, -np.inf]) out_arr = np.zeros_like(a, dtype=bool) np.isinf(a, out=out_arr, where=(a != 0)) print(out_arr) 

Output
[ True False False  True] 

Explanation: We store the result in out_arr and apply the check only where the condition a != 0 is True. This avoids checking for inf on zero values.
  


Next Article
numpy.isinf() in Python

M

Mohit Gupta
Improve
Article Tags :
  • Misc
  • Python
  • Python-numpy
  • Python numpy-Logic Functions
Practice Tags :
  • Misc
  • python

Similar Reads

    numpy.isneginf() in Python
    The numpy.isneginf() function tests element-wise whether it is negative infinity or not, and returns the result as a boolean array. Syntax :   numpy.isneginf(array, y = None) Parameters :  array : [array_like]Input array or object whose elements, we need to test for infinity. y : [array_like]A boole
    2 min read
    numpy.isposinf() in Python
    The numpy.isposinf() function tests element-wise whether it is positive infinity or not and returns the result as a boolean array.  Syntax :  numpy.isposinf(array, y = None) Parameters:   array : [array_like]Input array or object whose elements, we need to test for infinity. y : [array_like]A boolea
    2 min read
    numpy.isnan() in Python
    The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax :  numpy.isnan(array [, out]) Parameters :  array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed wit
    2 min read
    numpy.isfinite() in Python
    The numpy.isfinite() function tests element-wise whether it is finite or not(not infinity or not Not a Number) and return the result as a boolean array. Syntax :  numpy.isfinite(array [, out]) Parameters :  array : [array_like]Input array or object whose elements, we need to test for infinity out :
    2 min read
    numpy.isreal() in Python
    numpy.isreal() tests element-wise whether each value in the input array is a real number (i.e., not complex). It returns a Boolean result as a boolean array. Example:Pythonimport numpy as np a = np.array([1+0j, 2+3j, 5, 4.5, 7j]) res = np.isreal(a) print(res)Output[ True False True True False] Expla
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences