Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.greater_equal() in Python
Next article icon

numpy.greater() in Python

Last Updated : 08 Mar, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

The numpy.greater() checks whether x1 is greater than x2 or not. Syntax : 

numpy.greater(x1, x2[, out]) 

Parameters : 

x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be                broadcastable to a common shape   out    : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 are scalars.

Return : 

Boolean array indicating results, whether x1 is greater than x2 or not.

Code 1 : 

Python




# Python Program illustrating
# numpy.greater() method
   
import numpy as geek 
  
a  = geek.greater([8., 2.], [5., 3.])
print("Not equal : \n", a, "\n")
  
b = geek.greater([2, 2], [[1, 3],[1, 4]])
print("Not equal : \n", b, "\n")
  
a = geek.array([4,2])
b = geek.array([6,2])
  
print("Is a greater than b : ", a > b)
 
 

Output : 

Not equal :    [ True False]     Not equal :    [[ True False]   [ True False]]     Is a greater than b :  [False False]

Code 2 : 

Python




# Python Program illustrating
# numpy.greater() method
    
import numpy as geek 
  
# Here we will compare Float with int values
a = geek.array([1.1, 1])
b = geek.array([1, 2])
   
# indicating 1.1 is greater than 1
print("Comparing float with int : ", a < b)
  
# indicating 1.1 is greater than 1
d  = geek.greater(a, b)
print("\n Comparing float with int using  .greater() : ", d)
 
 

Output : 

Comparing float with int :  [False  True]     Comparing float with int using  .greater() :  [ True False]

Code 3 : 

Python




# Python Program illustrating
# numpy.greater() method
    
import numpy as geek 
  
# Here we will compare Complex values with int 
a = geek.array([1j,2])
b = geek.array([1,2])
   
# indicating 1j is greater than 1
print("Comparing complex with int : ", a < b)
  
# indicating 1j is greater than 1
d  = geek.greater(a, b)
print("\nComparing complex with int using .greater() : ", d)
 
 

Output : 

Comparing complex with int :  [ True False]    Comparing complex with int using .greater() :  [False False]

Note : These codes won’t run on online IDE’s. So please, run them on your systems to explore the working.



Next Article
numpy.greater_equal() in Python
https://media.geeksforgeeks.org/auth/avatar.png
GeeksforGeeks
Improve
Article Tags :
  • Python
  • Python numpy-Logic Functions
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • numpy.greater_equal() in Python
    The numpy.greater_equal() checks whether x1 >= x2 or not. Syntax : numpy.greater_equal(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 are sca
    2 min read
  • numpy.any() in Python
    The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax : numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : [i
    3 min read
  • numpy.argmax() in Python
    The numpy.argmax() function returns indices of the max element of the array in a particular axis. Syntax : numpy.argmax(array, axis = None, out = None) Parameters : array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to ins
    3 min read
  • numpy.fmax() in Python
    numpy.fmax() function is used to compute element-wise maximum of array elements. This function compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first
    2 min read
  • numpy.fabs() in Python
    numpy.fabs() function is used to compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in arr. It always return absolute values in floats. Syntax : numpy.fabs(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, u
    2 min read
  • numpy.floor() in Python
    The numpy.floor() function returns the largest integer less than or equal to each element in the input array. It effectively rounds numbers down to the nearest whole number. Let's understand with an example: [GFGTABS] Python import numpy as np a = [0.5, 1.5, 2.5, 3, 4.5, 10.1] res = np.floor(a) prin
    1 min read
  • numpy.not_equal() in Python
    The numpy.not_equal() checks whether two element are unequal or not. Syntax : numpy.not_equal(x1, x2[, out])Parameters : x1, x2 : [array_like]Input Array whose elements we want to checkout : [ndarray, optional]Output array that returns True/False. A placeholder the same shape as x1 to store the resu
    2 min read
  • numpy.fmin() in Python
    numpy.fmin() function is used to compute element-wise minimum of array elements. This function compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first
    2 min read
  • numpy.clip() in Python
    numpy.clip() function is used to Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1. Syntax : numpy.clip(a, a_min,
    2 min read
  • Python | Numpy numpy.ndarray.__ge__()
    With the help of numpy.ndarray.__ge__() method of Numpy, We can find that which element in an array is greater then or equal to the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__ge__($self, value, /) Re
    1 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences