numpy.expm1() in Python Last Updated : 29 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.expm1(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate exponential of all the elements subtracting 1 from all the input array elements. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional]Output array with same dimensions as Input array, placed with result. **kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone. Return : An array with exponential(all elements of input array) - 1. Code 1 : Working Python # Python program explaining # expm1() function import numpy as np in_array = [1, 3, 5] print ("Input array : \n", in_array) exp_values = np.exp(in_array) print ("\nExponential value of array element : " "\n", exp_values) expm1_values = np.expm1(in_array) print ("\n(Exponential value of array element) - (1) " ": \n", expm1_values) Output : Input array : [1, 3, 5] Exponential value of array element : [ 2.71828183 20.08553692 148.4131591 ] (Exponential value of array element) - (1) : [ 1.71828183 19.08553692 147.4131591 ] Code 2 : Graphical representation Python # Python program showing # Graphical representation of # expm1() function import numpy as np import matplotlib.pyplot as plt in_array = [1, 1.2, 1.4, 1.6, 1.8, 2] out_array = np.expm1(in_array) print("out_array : ", out_array) y = [1, 1.2, 1.4, 1.6, 1.8, 2] plt.plot(in_array, y, color = 'blue', marker = "*") # red for numpy.expm1() plt.plot(out_array, y, color = 'red', marker = "o") plt.title("numpy.expm1()") plt.xlabel("X") plt.ylabel("Y") plt.show() Output : out_array : [ 1.71828183 2.32011692 3.05519997 3.95303242 5.04964746 6.3890561 ] References : https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expm1.html#numpy.expm1 . Comment More infoAdvertise with us Next Article numpy.expm1() in Python M mohit gupta_omg :) Follow Improve Article Tags : Python Python-numpy Python numpy-Mathematical Function Practice Tags : python Similar Reads numpy.exp() in Python numpy.exp(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate exponential of all the elements in the input array. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray 4 min read numpy.exp2() in Python numpy.exp2(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate 2**x for all x being the array elements. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional 2 min read numpy.ldexp() in Python In Python, numpy.ldexp(arr1, arr2[, out]) function returns arr1 * (2**arr2), element-wise. This is also called as inverse of numpy.frexp() function. Syntax: numpy.ldexp()Parameters: arr1: [array_like] Array of multipliers. arr2: [array_like, int] Array of twos exponents. out: [ndarray, optional] Out 1 min read NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C 2 min read numpy.ppmt() in Python numpy.ppmt(rate, nper, pv, fv, when = âendâ) : This financial function helps user to compute payment value as per the principal value only. Parameters : rate : [scalar or (M, )array] Rate of interest as decimal (not per cent) per period nper : [scalar or (M, )array] total compounding periods fv : [s 2 min read Like