Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.expm1() in Python
Next article icon

numpy.expm1() in Python

Last Updated : 29 Nov, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.expm1(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate exponential of all the elements subtracting 1 from all the input array elements. Parameters :
  array    : [array_like]Input array or object whose elements, we need to test.  out      : [ndarray, optional]Output array with same dimensions as Input array,              placed with result.  **kwargs : allows you to pass keyword variable length of argument to a function.              It is used when we want to handle named argument in a function.  where    : [array_like, optional]True value means to calculate the universal              functions(ufunc) at that position, False value means to leave the              value in the output alone.  
Return :
  An array with exponential(all elements of input array) - 1.   
Code 1 : Working Python
# Python program explaining # expm1() function  import numpy as np  in_array = [1, 3, 5] print ("Input array : \n", in_array)  exp_values = np.exp(in_array) print ("\nExponential value of array element : "        "\n", exp_values)  expm1_values = np.expm1(in_array) print ("\n(Exponential value of array element) - (1) "        ": \n", expm1_values) 
Output :
  Input array :    [1, 3, 5]    Exponential value of array element :    [   2.71828183   20.08553692  148.4131591 ]    (Exponential value of array element) - (1) :    [   1.71828183   19.08553692  147.4131591 ]  
  Code 2 : Graphical representation Python
# Python program showing # Graphical representation of  # expm1() function  import numpy as np import matplotlib.pyplot as plt  in_array = [1, 1.2, 1.4, 1.6, 1.8, 2] out_array = np.expm1(in_array)  print("out_array : ", out_array)  y = [1, 1.2, 1.4, 1.6, 1.8, 2] plt.plot(in_array, y, color = 'blue', marker = "*")  # red for numpy.expm1() plt.plot(out_array, y, color = 'red', marker = "o") plt.title("numpy.expm1()") plt.xlabel("X") plt.ylabel("Y") plt.show()   
Output : out_array : [ 1.71828183 2.32011692 3.05519997 3.95303242 5.04964746 6.3890561 ] References : https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expm1.html#numpy.expm1 .

Next Article
numpy.expm1() in Python

M

mohit gupta_omg :)
Improve
Article Tags :
  • Python
  • Python-numpy
  • Python numpy-Mathematical Function
Practice Tags :
  • python

Similar Reads

    numpy.exp() in Python
    numpy.exp(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate exponential of all the elements in the input array. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray
    4 min read
    numpy.exp2() in Python
    numpy.exp2(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate 2**x for all x being the array elements. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional
    2 min read
    numpy.ldexp() in Python
    In Python, numpy.ldexp(arr1, arr2[, out]) function returns arr1 * (2**arr2), element-wise. This is also called as inverse of numpy.frexp() function. Syntax: numpy.ldexp()Parameters: arr1: [array_like] Array of multipliers. arr2: [array_like, int] Array of twos exponents. out: [ndarray, optional] Out
    1 min read
    NumPy Array in Python
    NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C
    2 min read
    numpy.ppmt() in Python
    numpy.ppmt(rate, nper, pv, fv, when = ‘end’) : This financial function helps user to compute payment value as per the principal value only. Parameters : rate : [scalar or (M, )array] Rate of interest as decimal (not per cent) per period nper : [scalar or (M, )array] total compounding periods fv : [s
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences