Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.array_equal() in Python
Next article icon

numpy.equal() in Python

Last Updated : 21 Jun, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

numpy.equal(arr1, arr2, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None, ufunc ‘not_equal’) : This logical function checks for arr1 == arr2 element-wise. Parameters : 

arr1 : [array_like]Input array arr2 : [array_like]Input array out : [ndarray, optional]Output array with same dimensions as Input array, placed with result. **kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.

Return : 

Returns arr1 == arr2 element-wise

  Code 1 : 

Python3




# Python Program illustrating
# numpy.equal() method
import numpy as geek
  
a  = geek.equal([1., 2.], [1., 3.])
print("Check to be Equal : \n", a, "\n")
  
b = geek.equal([1, 2], [[1, 3],[1, 4]])
print("Check to be Equal : \n", b, "\n")
 
 

Output : 

Check to be Equal :   [ True False]   Check to be Equal :   [[ True False]  [ True False]] 

  Code 2 : Comparing data-type using .equal() function 

Python3




# Python Program illustrating
# numpy.equal() method
import numpy as geek
  
# Here we will compare Complex values with int
a = geek.array([0 + 1j, 2])
b = geek.array([1,2])
  
d  = geek.equal(a, b)
print("Comparing complex with int using .equal() : ", d)
 
 

Output : 

Comparing complex with int using .equal() :  [False  True]

  Code 3 : 

Python3




# Python Program illustrating
# numpy.not_equal() method
import numpy as geek
  
# Here we will compare Float with int values
a = geek.array([1.1, 1])
b = geek.array([1, 2])
   
d  = geek.not_equal(a, b)
print("\nComparing float with int using .not_equal() : ", d)
 
 

Output :

Comparing float with int using .not_equal() :  [ True  True]

Time complexity : 

equal has time complexity of O(N). Where k is the length of list which need to be added.

References : https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.equal.html .



Next Article
numpy.array_equal() in Python
author
mohit gupta_omg :)
Improve
Article Tags :
  • Python
  • Python numpy-Logic Functions
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • numpy.not_equal() in Python
    The numpy.not_equal() checks whether two element are unequal or not. Syntax : numpy.not_equal(x1, x2[, out])Parameters : x1, x2 : [array_like]Input Array whose elements we want to checkout : [ndarray, optional]Output array that returns True/False. A placeholder the same shape as x1 to store the resu
    2 min read
  • numpy.all() in Python
    The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis :
    3 min read
  • numpy.less_equal() in Python
    The numpy.less_equal() function checks whether x1 is <= x2 or not. Syntax : numpy.less_equal(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 a
    2 min read
  • numpy.array_equal() in Python
    numpy.array_equal(arr1, arr2) : This logical function that checks if two arrays have the same shape and elements. Parameters : arr1 : [array_like]Input array or object whose elements, we need to test. arr2 : [array_like]Input array or object whose elements, we need to test. Return : True, if both ar
    1 min read
  • numpy.any() in Python
    The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax : numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : [i
    3 min read
  • numpy.greater_equal() in Python
    The numpy.greater_equal() checks whether x1 >= x2 or not. Syntax : numpy.greater_equal(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 are sca
    2 min read
  • numpy.greater() in Python
    The numpy.greater() checks whether x1 is greater than x2 or not. Syntax : numpy.greater(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 are scala
    2 min read
  • numpy.allclose() in Python
    numpy.allclose() function is used to find if two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(arr2)) and the absolute difference atol are added together to compare against the absolute differenc
    3 min read
  • numpy.array_equiv() in Python
    numpy.array_equiv(arr1, arr2) : This logical function that checks if two arrays have the same elements and shape consistent. Shape consistent means either they are having the same shape, or one input array can be broadcasted to create the same shape as the other one. Parameters : arr1 : [array_like]
    2 min read
  • numpy.isnan() in Python
    The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax : numpy.isnan(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed with
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences