Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.diag() in Python
Next article icon

numpy.diag() in Python

Last Updated : 09 Mar, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

numpy.diag(a, k=0) : Extracts and construct a diagonal array 
Parameters : 

a : array_like   k : [int, optional, 0 by default]            Diagonal we require; k>0 means diagonal above main diagonal or vice versa.


Returns : 

ndarray
Python
# Python Programming illustrating # numpy.diag method  import numpy as geek  # matrix creation by array input a = geek.matrix([[1, 21, 30],                   [63 ,434, 3],                   [54, 54, 56]])  print("Main Diagonal elements : \n", geek.diag(a), "\n")  print("Diagonal above main diagonal : \n", geek.diag(a, 1), "\n")  print("Diagonal below main diagonal : \n", geek.diag(a, -1)) 

Output : 
 

Main Diagonal elements :    [  1 434  56]     Diagonal above main diagonal :    [21  3]     Diagonal below main diagonal :    [63 54]


References : 
https://docs.scipy.org/doc/numpy/reference/generated/numpy.diagflat.html#numpy.diagflat 
Note : 
These NumPy-Python programs won't run on online IDE's, so run them on your systems to explore them 
.  


Next Article
numpy.diag() in Python

M

Mohit Gupta
Improve
Article Tags :
  • Python
  • Python-numpy
  • Python numpy-arrayCreation
Practice Tags :
  • python

Similar Reads

    numpy.diagflat() in Python
    numpy.diagflat (a, k = 0): Create a two-dimensional array with the array_like input as a diagonal to the new output array. Parameters : a : array_like input data with diagonal elements strong>k : [int, optional, 0 by default] Diagonal we require; k>0 means diagonal above main diagonal or vice
    1 min read
    numpy.diag_indices() in Python
    The numpy.diag_indices() function returns indices in order to access the elements of main diagonal of a array with minimum dimension = 2. Returns indices in the form of tuple. to access the main diagonal of an array.  Syntax: numpy.diag_indices(n, n_dim = 2) Parameters :  n : size of array, for whic
    2 min read
    NumPy Array in Python
    NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C
    2 min read
    numpy.eye() in Python
    numpy.eye() is a function in the NumPy library that creates a 2D array with ones on the diagonal and zeros elsewhere. This function is often used to generate identity matrices with ones along the diagonal and zeros in all other positions.Let's understand with the help of an example:Pythonimport nump
    2 min read
    numpy.identity() in Python
    numpy.identity() function is used to create an identity matrix which is used to make identity matrix. This is commonly used in linear algebra and numerical computations. It has the following properties:Diagonal elements are all 1s.Non-diagonal elements are all 0s.Syntax: numpy.identity(n, dtype=None
    1 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences