Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.common_type() function – Python
Next article icon

numpy.correlate() function – Python

Last Updated : 11 Jun, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

numpy.correlate() function defines the cross-correlation of two 1-dimensional sequences. This function computes the correlation as generally defined in signal processing texts: c_{av}[k] = sum_n a[n+k] * conj(v[n])

Syntax : numpy.correlate(a, v, mode = ‘valid’)

Parameters :
a, v : [array_like] Input sequences.
mode : [{‘valid’, ‘same’, ‘full’}, optional] Refer to the convolve docstring. Default is ‘valid’.

Return : [ndarray] Discrete cross-correlation of a and v.

Code #1 :




# Python program explaining
# numpy.correlate() function
       
# importing numpy as geek 
import numpy as geek 
   
a = [2, 5, 7]
v = [0, 1, 0.5]
   
gfg = geek.correlate(a, v)
   
print (gfg)
 
 

Output :

  [8.5]  

 
Code #2 :




# Python program explaining
# numpy.correlate() function
       
# importing numpy as geek 
import numpy as geek 
   
a = [2, 5, 7]
v = [0, 1, 0.5]
   
gfg = geek.correlate(a, v, "same")
   
print (gfg)
 
 

Output :

  [4.5 8.5 7. ]  


Next Article
numpy.common_type() function – Python
author
sanjoy_62
Improve
Article Tags :
  • Python
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • Python | numpy.cov() function
    Covariance provides the measure of strength of correlation between two variable or more set of variables. The covariance matrix element Cij is the covariance of xi and xj. The element Cii is the variance of xi. If COV(xi, xj) = 0 then variables are uncorrelatedIf COV(xi, xj) > 0 then variables po
    2 min read
  • numpy.i0() function | Python
    numpy.i0() function is the modified Bessel function of the first kind, order 0. it's usually denoted by I0. Syntax : numpy.i0(x) Parameters : x : [array_like, dtype float or complex] Argument of the Bessel function. Return : [ndarray, shape = x.shape, dtype = x.dtype] The modified Bessel function ev
    1 min read
  • numpy.fromstring() function – Python
    numpy.fromstring() function create a new one-dimensional array initialized from text data in a string. Syntax : numpy.fromstring(string, dtype = float, count = -1, sep = ' ') Parameters : string : [str] A string that contained the data. dtype : [data-type, optional] Data-type of the array. Default d
    1 min read
  • Numpy ndarray.dot() function | Python
    The numpy.ndarray.dot() function computes the dot product of two arrays. It is widely used in linear algebra, machine learning and deep learning for operations like matrix multiplication and vector projections. Example: [GFGTABS] Python import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5,
    2 min read
  • numpy.common_type() function – Python
    numpy.common_type() function return a scalar type which is common to the input arrays. Syntax : numpy.common_type(arrays) Parameters : array1, array2, .... : [ndarrays] Input arrays. Return : [dtype] Return the data type which is common to the input arrays. Code #1 : # Python program explaining # nu
    1 min read
  • Numpy recarray.dot() function | Python
    In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array
    3 min read
  • numpy.fromfunction() function – Python
    numpy.fromfunction() function construct an array by executing a function over each coordinate and the resulting array, therefore, has a value fn(x, y, z) at coordinate (x, y, z). Syntax : numpy.fromfunction(function, shape, dtype) Parameters : function : [callable] The function is called with N para
    2 min read
  • atan2() function in Python
    atan2(y, x) returns value of atan(y/x) in radians. The atan2() method returns a numeric value between -[Tex]\pi[/Tex] and [Tex]\pi[/Tex] representing the angle [Tex]\theta[/Tex] of a (x, y) point and positive x-axis. Syntax : atan2(y, x) Parameter : (y, x) - Both must be a numeric value. Returns : R
    2 min read
  • NumPy Array in Python
    NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C
    2 min read
  • numpy.cos() in Python
    numpy.cos(x[, out]) = ufunc 'cos') : This mathematical function helps user to calculate trigonometric cosine for all x(being the array elements). Parameters : array : [array_like]elements are in radians. 2pi Radians = 360 degrees Return : An array with trigonometric cosine of x for all x i.e. array
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences