Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Python Tutorial
  • Interview Questions
  • Python Quiz
  • Python Glossary
  • Python Projects
  • Practice Python
  • Data Science With Python
  • Python Web Dev
  • DSA with Python
  • Python OOPs
Open In App
Next Article:
numpy.inner() in python
Next article icon

numpy.amin() in Python

Last Updated : 28 Apr, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

The numpy.amin() function returns minimum of an array or minimum along axis(if mentioned). Syntax : numpy.amin(arr, axis = None, out = None, keepdims = <class numpy._globals._NoValue>) Parameters : 

  • arr : [array_like]input data
  • axis : [int or tuples of int]axis along which we want the min value. Otherwise, it will consider arr to be flattened.
  • out : [ndarray, optional]Alternative output array in which to place the result
  • keepdims : [boolean, optional]If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then keepdims will not be passed through to the all method of sub-classes of ndarray, however any non-default value will be. If the sub-classes sum method does not implement keepdims any exceptions will be raised.

Return : Minimum of array - arr[ndarray or scalar], scalar if axis is None; the result is an array of dimension a.ndim - 1, if axis is mentioned. Code - 

Python
# Python Program illustrating # numpy.amin() method  import numpy as geek  # 1D array arr = geek.arange(8) print(&quot;arr : &quot;, arr) print(&quot;Min of arr : &quot;, geek.amin(arr))  # 2D array arr = geek.arange(10).reshape(2, 5) print(&quot;\narr : &quot;, arr)  # Minimum of the flattened array print(&quot;\nMin of arr, axis = None : &quot;, geek.amin(arr))  # Minimum along the first axis # axis 0 means vertical print(&quot;Min of arr, axis = 0 : &quot;, geek.amin(arr, axis = 0))  # Minimum along the second axis # axis 1 means horizontal print(&quot;Min of arr, axis = 1 : &quot;, geek.amin(arr, axis = 1))    

Output - 

arr :  [0 1 2 3 4 5 6 7] Min of arr :  0  arr :  [[0 1 2 3 4]  [5 6 7 8 9]]  Min of arr, axis = None :  0 Min of arr, axis = 0 :  [0 1 2 3 4] Min of arr, axis = 1 :  [0 5]

References - https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.amin.html#numpy.amin 

Note - These codes won't run on online IDE's. So please, run them on your systems to explore the working.


Next Article
numpy.inner() in python

M

Mohit Gupta_OMG
Improve
Article Tags :
  • Python
Practice Tags :
  • python

Similar Reads

  • numpy.alen() in Python
    numpy.alen() function is used to return the length of the first dimension of the input array. Syntax : numpy.alen(arr) Parameters : arr : [array_like] Input array. Return : [int]Length of the first dimension of arr. Code #1 : # Python program explaining # alen() function import numpy as geek # input
    1 min read
  • numpy.find() in Python
    numpy.core.defchararray.find(arr, substring, start=0, end=None): Finds the lowest index of the sub-string in the specified range. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, optional] Range to search in. Returns : An integer array wi
    1 min read
  • numpy.isnan() in Python
    The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax :  numpy.isnan(array [, out]) Parameters :  array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed wit
    2 min read
  • numpy.index() in Python
    numpy.core.defchararray.index(arr, substring, start=0, end=None): Finds the lowest index of the sub-string in the specified range But if substring is not found, it raises ValueError. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, option
    1 min read
  • numpy.inner() in python
    numpy.inner(arr1, arr2): Computes the inner product of two arrays. Parameters : arr1, arr2 : array to be evaluated. Return: Inner product of the two arrays. Code #1 : # Python Program illustrating # numpy.inner() method import numpy as geek # Scalars product = geek.inner(5, 4) print("inner Prod
    1 min read
  • numpy.angle() in Python
    numpy.angle() function is used when we want to compute the angle of the complex argument. A complex number is represented by “ x + yi " where x and y are real number and i= (-1)^1/2. The angle is calculated by the formula tan-1(x/y). Syntax : numpy.angle(z, deg=0) Parameters : z : [array_like] A com
    2 min read
  • numpy.add() in Python
    NumPy, the Python powerhouse for scientific computing, provides an array of tools to efficiently manipulate and analyze data. Among its key functionalities lies numpy.add() a potent function that performs element-wise addition on NumPy arrays. numpy.add() SyntaxSyntax : numpy.add(arr1, arr2, /, out=
    4 min read
  • numpy.arange() in Python
    numpy.arange() function creates an array of evenly spaced values within a given interval. It is similar to Python's built-in range() function but returns a NumPy array instead of a list. Let's understand with a simple example: [GFGTABS] Python import numpy as np #create an array arr= np.arange(5 , 1
    2 min read
  • numpy.nanmin() in Python
    numpy.nanmin()function is used when to returns minimum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmin(arr, axis=None, out=None) Parameters : arr :Input array. axis :Axis along which we want the min value. Otherwise, it will consider
    2 min read
  • numpy.around() in Python
    numpy.around(arr, decimals = 0, out = None) : This mathematical function helps user to evenly round array elements to the given number of decimals. Parameters : array : [array_like] Input array. decimal : [int, optional] Decimal places we want to round off. Default = 0. In case of -ve decimal, it sp
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences