Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.atleast_1d() in Python
Next article icon

numpy.all() in Python

Last Updated : 07 Mar, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True.

Syntax: numpy.all(array,                      axis = None,                      out = None,                      keepdims = class numpy._globals._NoValue at 0x40ba726c)

Parameters : 

array    :[array_like]Input array or object whose elements, we need to test.  axis     : [int or tuple of ints, optional]Axis along which array elements        are evaluated.       The default (axis = None) is to perform a logical AND over all the dimensions of the input       array. Axis may be negative, in which case it counts from the last to the first axis.  out      : [ndarray, optional]Output array with same dimensions as Input array,        placed with result  keepdims : [boolean, optional]If this is set to True, the axes which are        reduced are left in the result as dimensions with size one. With this option, the result        will broadcast correctly against the input array.       If the default value is passed, then keepdims will not be passed through to the all        method of sub-classes of ndarray, however any non-default value will be. If the        sub-classes sum method does not implement keepdims any exceptions will be raised.

Return : 

A new Boolean array as per 'out' parameter

Code 1 : 

Python

# Python Program illustrating
# numpy.all() method
    
import numpy as geek
    
# Axis = NULL 
#  True    False
#  True    True
#  True  : False  =  False
   
print("Bool Value with axis = NONE  : ",
      geek.all([[True,False],[True,True]]))
   
# Axis = 0 
#  True    False
#  True    True
#  True  : False
print("\nBool Value with axis = 0  : ",
      geek.all([[True,False],[True,True]], axis = 0))
   
print("\nBool : ", geek.all([-1, 4, 5]))
   
   
# Not a Number (NaN), positive infinity and negative infinity 
# evaluate to True because these are not equal to zero.
print("\nBool : ", geek.all([1.0, geek.nan]))
   
print("\nBool Value : ", geek.all([[0, 0],[0, 0]]))
                      
                       

Output : 

Bool Value with axis = NONE  :  False    Bool Value with axis = 0  :  [ True False]    Bool :  True    Bool :  True    Bool Value :  False

Code 2 : 

Python

# Python Program illustrating
# numpy.all() method
  
# Parameter : keepdims      
             
import numpy as geek
  
# setting keepdims = True
print("\nBool Value : ", geek.all([[1, 0],[0, 4]], True))
  
  
# setting keepdims = True
print("\nBool Value : ", geek.all([[0, 0],[0, 0]], False))
                      
                       

Output :

Bool Value :  [False False]    Bool Value :  [False False]  VisibleDeprecationWarning: using a boolean instead of an integer   will result in an error in the future   return umr_all(a, axis, dtype, out, keepdims)

Note : These codes won’t run on online IDE’s. So please, run them on your systems to explore the working.



Next Article
numpy.atleast_1d() in Python
https://media.geeksforgeeks.org/auth/avatar.png
GeeksforGeeks
Improve
Article Tags :
  • Python
  • Python numpy-Logic Functions
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • numpy.any() in Python
    The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax : numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : [i
    3 min read
  • NumPy Array in Python
    NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C
    2 min read
  • numpy.find() in Python
    numpy.core.defchararray.find(arr, substring, start=0, end=None): Finds the lowest index of the sub-string in the specified range. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, optional] Range to search in. Returns : An integer array wi
    1 min read
  • numpy.asarray() in Python
    numpy.asarray()function is used when we want to convert input to an array. Input can be lists, lists of tuples, tuples, tuples of tuples, tuples of lists and arrays. Syntax : numpy.asarray(arr, dtype=None, order=None) Parameters : arr : [array_like] Input data, in any form that can be converted to a
    2 min read
  • numpy.atleast_1d() in Python
    numpy.atleast_1d()function is used when we want to Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Syntax : numpy.atleast_1d(*arrays) Parameters : arrays1, arrays2, ... : [array_like] One or mo
    2 min read
  • numpy.index() in Python
    numpy.core.defchararray.index(arr, substring, start=0, end=None): Finds the lowest index of the sub-string in the specified range But if substring is not found, it raises ValueError. Parameters: arr : array-like or string to be searched. substring : substring to search for. start, end : [int, option
    1 min read
  • Python NumPy
    Numpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays. It is the fundamental package for scientific computing with Python. Besides its obvious scientific uses, Numpy can also be used as an efficient
    6 min read
  • numpy.ndarray.fill() in Python
    numpy.ndarray.fill() method is used to fill the numpy array with a scalar value. If we have to initialize a numpy array with an identical value then we use numpy.ndarray.fill(). Suppose we have to create a NumPy array a of length n, each element of which is v. Then we use this function as a.fill(v).
    2 min read
  • numpy.load() in Python
    numpy.load() function return the input array from a disk file with npy extension(.npy). Syntax : numpy.load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII') Parameters: file : : file-like object, string, or pathlib.Path.The file to read. File-like objects must support the
    2 min read
  • numpy.where() in Python
    We will explore the basics of numpy.where(), how it works, and practical use cases to illustrate its importance in data manipulation and analysis. Syntax of numpy.where()Syntax :numpy.where(condition[, x, y]) Parameters condition: A condition that tests elements of the array.x (optional): Values fro
    3 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences