Number of permutation with K inversions
Last Updated : 08 Mar, 2025
We are given two numbers n and k, the task is to find how many permutations of the first n number have exactly k inversion. Two elements in a sequence form an inversion if the smaller element appears before the larger element.
Examples:
Input: n = 3, k = 1
Output: 2
Explanation: Total Permutation of first 3 numbers are 123, 132, 213, 231, 312, 321
Permutation with 1 inversion: 132 and 213
Input: n = 3, k = 3
Output: 1
Explanation: Permutation with 3 inversions: 321
Using Recursion - O(n! * k) Time and O(n) Space
Base Cases:
- If n == 0, no permutations are possible, so return 0.
- If k == 0, there is exactly one permutation (the sorted order), so return 1.
Recursive Relation:
- For each possible position i where the nth element can be placed (where i ranges from 0 to min(k, n-1)), we recursively call the function to calculate the number of permutations of n-1 elements with k-i inversions. This represents placing the
n
th element in a way that creates i
inversions.
countPermWithkInversions(n, k) = Σ(countPermWithkInversions(n-1, k-i)) for i = 0 to min(k, n-1)
C++ // C++ code to count permutations with exactly // k inversions using Recursion #include <iostream> using namespace std; int countPermWithkInversions(int n, int k) { // Base cases // no permutations possible with 0 elements if (n == 0) return 0; // Only one way to have 0 inversions: sorted order if (k == 0) return 1; // Initialize result for this recursive step int result = 0; // Recursively sum up all valid counts // by placing the nth largest element // in positions that create the // required inversion counts for (int i = 0; i <= min(k, n - 1); i++) { result += countPermWithkInversions(n - 1, k - i); } return result; } int main() { int n = 4; int k = 2; cout << countPermWithkInversions(n, k); return 0; }
Java // Java code to count permutations with // exactly k inversions using Recursion class GfG { static int countPermWithkInversions(int n, int k) { // Base cases // no permutations possible with 0 elements if (n == 0) return 0; // Only one way to have 0 inversions: sorted order if (k == 0) return 1; // Initialize result for this recursive step int result = 0; // Recursively sum up all valid counts // by placing the nth largest element // in positions that create the // required inversion counts for (int i = 0; i <= Math.min(k, n - 1); i++) { result += countPermWithkInversions(n - 1, k - i); } return result; } public static void main(String[] args) { int n = 4; int k = 2; System.out.println(countPermWithkInversions(n, k)); } }
Python # Python code to count permutations with exactly # k inversions using Recursion def countPermWithkInversions(n, k): # Base cases # no permutations possible with 0 elements if n == 0: return 0 # Only one way to have 0 inversions: sorted order if k == 0: return 1 # Initialize result for this recursive step result = 0 # Recursively sum up all valid counts # by placing the nth largest element # in positions that create the # required inversion counts for i in range(min(k, n - 1) + 1): result += countPermWithkInversions(n - 1, k - i) return result if __name__ == "__main__": n = 4 k = 2 print(countPermWithkInversions(n, k))
C# // C# code to count permutations with exactly // k inversions using Recursion using System; class GfG { static int countPermWithkInversions(int n, int k) { // Base cases // no permutations possible with 0 elements if (n == 0) return 0; // Only one way to have 0 inversions: sorted order if (k == 0) return 1; // Initialize result for this recursive step int result = 0; // Recursively sum up all valid counts // by placing the nth largest element // in positions that create the // required inversion counts for (int i = 0; i <= Math.Min(k, n - 1); i++) { result += countPermWithkInversions(n - 1, k - i); } return result; } static void Main() { int n = 4; int k = 2; Console.WriteLine(countPermWithkInversions(n, k)); } }
JavaScript // Javascript code to count permutations with // exactly k inversions using Recursion function countPermWithkInversions(n, k) { // Base cases // no permutations possible with 0 elements if (n === 0) return 0; // Only one way to have 0 inversions: sorted order if (k === 0) return 1; // Initialize result for this recursive step let result = 0; // Recursively sum up all valid counts // by placing the nth largest element // in positions that create the // required inversion counts for (let i = 0; i <= Math.min(k, n - 1); i++) { result += countPermWithkInversions(n - 1, k - i); } return result; } const n = 4; const k = 2; console.log(countPermWithkInversions(n, k));
Using Top-Down DP (Memoization) – O(n*k*k) Time and O(n*k) Space
The above recursive solution satisfies two key properties of Dynamic Programming, enabling us to use memoization for an optimized approach.
1. Optimal Substructure
We solve the problem of counting permutations with exactly k inversions by breaking it into subproblems involving fewer elements and inversions. Specifically, if we have n elements and k required inversions, we can compute it by trying positions for the largest element in a way that contributes to the inversion count.
The recursive relation is:
- countPermWithkInversions(n, k) = Σ countPermWithkInversions(n-1, k-i)
Here, we consider placing the largest element in positions that create i inversions, where i ranges from 0 to min(k, n-1).
2. Overlapping Subproblems:
Many subproblems are computed multiple times when finding permutations for smaller subsets and inversion counts. For example, while calculating the result for (n, k), subproblems for (n-1, k-i) are encountered repeatedly.
We use a 2D array memo of size (n+1) x (k+1), initialized to -1, to store results of subproblems. If a result is already stored in memo[n][k], we return it directly, avoiding redundant calculations.
C++ // C++ code to find number of permutation // with k inversion using Memoization #include <bits/stdc++.h> using namespace std; // Helper function for recursive computation int kInversionsHelper(int n, int k, vector<vector<int>>& memo) { // Base case: If there are no elements, // no permutations are possible if (n == 0) return 0; // Base case: If k is 0, only one way to // have 0 inversions: sorted order if (k == 0) return 1; // Check if the result is already // computed (memoization) if (memo[n][k] != -1) return memo[n][k]; int result = 0; // Loop through possible inversion counts // for the nth largest element for (int i = 0; i <= min(k, n - 1); i++) { // Recursively count permutations for the // remaining elements and inversions result = (result + kInversionsHelper(n - 1, k - i, memo)); } return memo[n][k] = result; } // Function to count permutations with k inversions int countPermWithkInversions(int n, int k) { // Initialize memoization table with -1 // to indicate uncomputed values vector<vector<int>> memo(n + 1, vector<int>(k + 1, -1)); return kInversionsHelper(n, k, memo); } int main() { int n = 4; int k = 2; cout << countPermWithkInversions(n, k); return 0; }
Java // Java code to find number of permutation // with k inversions using Memoization import java.util.Arrays; class GfG { // Helper function for recursive computation static int kInversionsHelper(int n, int k, int[][] memo) { // Base case: If there are no elements, // no permutations are possible if (n == 0) return 0; // Base case: If k is 0, only one way to // have 0 inversions: sorted order if (k == 0) return 1; // Check if the result is already // computed (memoization) if (memo[n][k] != -1) return memo[n][k]; int result = 0; // Loop through possible inversion counts // for the nth largest element for (int i = 0; i <= Math.min(k, n - 1); i++) { // Recursively count permutations for the // remaining elements and inversions result = (result + kInversionsHelper(n - 1, k - i, memo)); } return memo[n][k] = result; } // Function to count permutations with k inversions static int countPermWithkInversions(int n, int k) { // Initialize memoization table with -1 // to indicate uncomputed values int[][] memo = new int[n + 1][k + 1]; for (int[] row : memo) { Arrays.fill(row, -1); } return kInversionsHelper(n, k, memo); } public static void main(String[] args) { int n = 4; int k = 2; System.out.println(countPermWithkInversions(n, k)); } }
Python # Python code to find number of permutation # with k inversions using Memoization def kInversionsHelper(n, k, memo): # Base case: If there are no elements, # no permutations are possible if n == 0: return 0 # Base case: If k is 0, only one way to # have 0 inversions: sorted order if k == 0: return 1 # Check if the result is already # computed (memoization) if memo[n][k] != -1: return memo[n][k] result = 0 # Loop through possible inversion counts # for the nth largest element for i in range(min(k, n - 1) + 1): # Recursively count permutations for the # remaining elements and inversions result = (result + kInversionsHelper(n - 1, k - i, memo)) memo[n][k] = result return result def countPermWithkInversions(n, k): # Initialize memoization table with -1 # to indicate uncomputed values memo = [[-1 for _ in range(k + 1)] for _ in range(n + 1)] return kInversionsHelper(n, k, memo) if __name__ == "__main__": n = 4 k = 2 print(countPermWithkInversions(n, k))
C# // C# code to find number of permutation // with k inversions using Memoization using System; class GfG { // Helper function for recursive computation static int kInversionsHelper(int n, int k, int[,] memo) { // Base case: If there are no elements, // no permutations are possible if (n == 0) return 0; // Base case: If k is 0, only one way to // have 0 inversions: sorted order if (k == 0) return 1; // Check if the result is already // computed (memoization) if (memo[n, k] != -1) return memo[n, k]; int result = 0; // Loop through possible inversion counts // for the nth largest element for (int i = 0; i <= Math.Min(k, n - 1); i++) { // Recursively count permutations for the // remaining elements and inversions result = (result + kInversionsHelper(n - 1, k - i, memo)); } return memo[n, k] = result; } static int countPermWithkInversions(int n, int k) { // Initialize memoization table with -1 // to indicate uncomputed values int[,] memo = new int[n + 1, k + 1]; for (int i = 0; i < memo.GetLength(0); i++) { for (int j = 0; j < memo.GetLength(1); j++) { memo[i, j] = -1; } } return kInversionsHelper(n, k, memo); } static void Main() { int n = 4; int k = 2; Console.WriteLine(countPermWithkInversions(n, k)); } }
JavaScript // JavaScript code to find number of permutation // with k inversions using Memoization function kInversionsHelper(n, k, memo) { // Base case: If there are no elements, // no permutations are possible if (n === 0) return 0; // Base case: If k is 0, only one way to // have 0 inversions: sorted order if (k === 0) return 1; // Check if the result is already // computed (memoization) if (memo[n][k] !== -1) return memo[n][k]; let result = 0; // Loop through possible inversion counts // for the nth largest element for (let i = 0; i <= Math.min(k, n - 1); i++) { // Recursively count permutations for the // remaining elements and inversions result = (result + kInversionsHelper(n - 1, k - i, memo)); } memo[n][k] = result; return result; } function countPermWithkInversions(n, k) { // Initialize memoization table with -1 // to indicate uncomputed values const memo = Array.from({length : n + 1}, () => Array(k + 1).fill(-1)); return kInversionsHelper(n, k, memo); } const n = 4; const k = 2; console.log(countPermWithkInversions(n, k));
Using Bottom-Up DP (Tabulation) – O(n*k*k) Time and O(n*k) Space
We create a 2D array dp of size (n + 1)*(k + 1), where the state dp[l][r] represents the number of permutations of l elements with exactly r inversions.
Base Case: dp[l][0] = 1 for all l, since there's only one way to have zero inversions-by arranging elements in sorted order.
For each element count l from 1 to n:
- For each inversion count r from 1 to k, calculate the number of valid permutations.
- To compute dp[l][r], we iterate over all possible positions of the largest element, which can create up to min(r, l-1) inversions, summing up the results from previous states
This relation fills the DP table by counting valid permutations based on subproblems:
- dp[l][r] = sum of dp[l-1][r-i] for all valid i.
The final result is stored in dp[n][k], representing the total permutations of n elements with exactly k inversions.
C++ // C++ code to find number of permutation // with K inversions using Tabulation #include <bits/stdc++.h> using namespace std; int countPermWithkInversions(int n, int k) { // Initialize a 2D table for dynamic programming vector<vector<int>> dp(n + 1, vector<int>(k + 1, 0)); // Base case: If k is 0, only one way to // have 0 inversions: sorted order for (int l = 0; l <= n; l++) { dp[l][0] = 1; } // Fill the table using the tabulation method for (int l = 1; l <= n; l++) { for (int r = 1; r <= k; r++) { for (int i = 0; i <= min(r, l - 1); i++) { // Count permutations for the remaining // elements and inversions dp[l][r] = (dp[l][r] + dp[l - 1][r - i]); } } } return dp[n][k]; } int main() { int n = 4; int k = 2; cout << countPermWithkInversions(n, k); return 0; }
Java // Java code to find number of permutation // with K inversions using Tabulation import java.util.Arrays; class GfG { static int countPermWithkInversions(int n, int k) { // Initialize a 2D table for dynamic programming int[][] dp = new int[n + 1][k + 1]; // Base case: If k is 0, only one way to // have 0 inversions: sorted order for (int l = 0; l <= n; l++) { dp[l][0] = 1; } // Fill the table using the tabulation method for (int l = 1; l <= n; l++) { for (int r = 1; r <= k; r++) { for (int i = 0; i <= Math.min(r, l - 1); i++) { // Count permutations for the remaining // elements and inversions dp[l][r] = (dp[l][r] + dp[l - 1][r - i]); } } } return dp[n][k]; } public static void main(String[] args) { int n = 4; int k = 2; System.out.println(countPermWithkInversions(n, k)); } }
Python # Python code to find number of permutation # with k inversions using Tabulation def countPermWithkInversions(n, k): # Initialize a 2D table for dynamic programming dp = [[0] * (k + 1) for _ in range(n + 1)] # Base case: If k is 0, only one way to # have 0 inversions: sorted order for l in range(n + 1): dp[l][0] = 1 # Fill the table using the tabulation method for l in range(1, n + 1): for r in range(1, k + 1): for i in range(min(r, l - 1) + 1): # Count permutations for the remaining # elements and inversions dp[l][r] = (dp[l][r] + dp[l - 1][r - i]) return dp[n][k] if __name__ == "__main__": n = 4 k = 2 print(countPermWithkInversions(n, k))
C# // C# code to find number of permutation // with k inversions using Tabulation using System; class GfG { static int countPermWithkInversions(int n, int k) { // Initialize a 2D table for dynamic programming int[,] dp = new int[n + 1, k + 1]; // Base case: If k is 0, only one way to // have 0 inversions: sorted order for (int l = 0; l <= n; l++) { dp[l, 0] = 1; } // Fill the table using the tabulation method for (int l = 1; l <= n; l++) { for (int r = 1; r <= k; r++) { for (int i = 0; i <= Math.Min(r, l - 1); i++) { // Count permutations for the remaining // elements and inversions dp[l, r] = (dp[l, r] + dp[l - 1, r - i]); } } } return dp[n, k]; } static void Main() { int n = 4; int k = 2; Console.WriteLine(countPermWithkInversions(n, k)); } }
JavaScript // JavaScript code to find number of permutation // with k inversions using Tabulation function countPermWithkInversions(n, k) { // Initialize a 2D table for dynamic programming const dp = Array.from({ length: n + 1 }, () => Array(k + 1).fill(0)); // Base case: If k is 0, only one way to // have 0 inversions: sorted order for (let l = 0; l <= n; l++) { dp[l][0] = 1; } // Fill the table using the tabulation method for (let l = 1; l <= n; l++) { for (let r = 1; r <= k; r++) { for (let i = 0; i <= Math.min(r, l - 1); i++) { // Count permutations for the remaining // elements and inversions dp[l][r] = (dp[l][r] + dp[l - 1][r - i]); } } } return dp[n][k]; } let n = 4; let k = 2; console.log(countPermWithkInversions(n, k));
Time Complexity: O(n*k*k), where n is the number of elements and k is the number of inversions, due to the nested loops iterating through n, k, and possible inversions.
Auxiliary Space: O(n*k), because we maintain a 2D table of size (n+1)×(k+1) to store the computed values for dynamic programming.
Similar Reads
Number of permutation with K inversions | Set 2 Given two integers N and K, the task is to count the number of permutations of the first N natural numbers having exactly K inversions. Since the count can be very large, print it modulo 109 + 7. An inversion is defined as a pair a[i], a[j] such that a[i] > a[j] and i < j. Examples: Input: N =
8 min read
Find a permutation of N natural numbers with K inversions Given two integers N and K, the task is to find a permutation of first N natural numbers with exactly K inversions. Examples : Input: N = 5, K = 4Output: 5 1 2 3 4 Explanation: In the above permutation P, the pairs (i, j) such that i < j and P[i] > P[j] are (0, 1), (0, 2), (0, 3), and (0, 4).
9 min read
Find the number of good permutations Given two integers N and K. The task is to find the number of good permutations of the first N natural numbers. A permutation is called good if there exist at least N - K indices i (1 ? i ? N) such that Pi = i. Examples: Input: N = 4, K = 1 Output: 1 {1, 2, 3, 4} is the only possible good permutatio
6 min read
Distinct permutations of a number Given an integer N, the task is to print all distinct permutations of the number N. Examples: Input: N = 133Output: 133 313 331Explanation:There are a total of 6 permutations, which are [133, 313, 331, 133, 313, 331].Out of all these permutations, distinct permutations are [133, 313, 331]. Input: N
9 min read
Count the number of special permutations Given two positive integers n and k, the task is to count the number of special permutations. A special permutation P is defined as a permutation of first n natural numbers in which there exists at least (n - k) indices such that Pi = i. Prerequisite: Derangements Examples: Input: n = 4, k = 2 Outpu
15+ min read