Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Number System and Arithmetic
  • Algebra
  • Set Theory
  • Probability
  • Statistics
  • Geometry
  • Calculus
  • Logarithms
  • Mensuration
  • Matrices
  • Trigonometry
  • Mathematics
Open In App
Next Article:
Class 11 NCERT Solutions - Chapter 13 Limits And Derivatives - Exercise 13.2
Next article icon

NCERT Solutions Class 11 - Chapter 12 Limits And Derivatives - Exercise 12.2

Last Updated : 22 Apr, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Question 1. Find the derivative of x2 – 2 at x = 10.

Solution:

f(x) = x2 – 2

f(x+h) = (x+h)2 – 2

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

When, x = 10

f'(10) = \lim_{h \to 0} (\frac{f(10+h)-f(10)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{((10+h)^2-2) - (10^2-2)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{((10^2+2(10)h+h^2)-2) - (10^2-2)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{(10^2+2(10)h+h^2-2 - 10^2+2)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{(20h+h^2)}{h})\\ f'(10) = \lim_{h \to 0} (20 + h)

f'(10) = 20 + 0

f'(10) = 20

Question 2. Find the derivative of x at x = 1.

Solution:

f(x) = x

f(x+h) = x+h

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

When, x = 1

f'(1) = \lim_{h \to 0} (\frac{f(1+h)-f(1)}{h})\\ f'(1) = \lim_{h \to 0} (\frac{(1+h) - (1)}{h})\\ f'(1) = \lim_{h \to 0} (\frac{(1+h - 1)}{h})\\ f'(1) = \lim_{h \to 0} (\frac{h}{h})\\ f'(1) = \lim_{h \to 0} (1)

f'(1) = 1

Question 3. Find the derivative of 99x at x = l00.

Solution:

f(x) = 99x

f(x+h) = 99(x+h)

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

When, x = 10

f'(100) = \lim_{h \to 0} (\frac{f(100+h)-f(100)}{h})\\ f'(100) = \lim_{h \to 0} (\frac{((99(100+h) - (99(100))}{h})\\ f'(100) = \lim_{h \to 0} (\frac{(9900+99h - 9900)}{h})\\ f'(100) = \lim_{h \to 0} (\frac{99h}{h})\\ f'(100) = \lim_{h \to 0} (99)

f'(100) = 99

Question 4. Find the derivative of the following functions from first principle.

(i) x3 − 27 

Solution:

f(x) = x3 – 27

f(x+h) = (x+h)3 – 27

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x+h)^3 – 27-(x^3 – 27)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x+h)^3 -x^3}{h}\\ f'(x) = \lim_{h \to 0} \frac{x^3+h^3+3xh(x+h)-x^3}{h}\\ f'(x) = \lim_{h \to 0} \frac{h^3+3xh(x+h)}{h}\\ f'(x) = \lim_{h \to 0} (h^2+3x(x+h))

f'(x) = 02+3x(x+0)

f'(x) = 3x2

(ii) (x-1) (x-2)

Solution:

f(x) = (x-1) (x-2) = x2 - 3x + 2

f(x) = (x+h)2 - 3(x+h) + 2

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) + 2-(x^2 - 3x + 2)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) + 2-x^2 + 3x - 2)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x^2+2xh+h^2 - 3x - 3h + 2-x^2 + 3x - 2)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(2xh+h^2 - 3h)}{h}\\ f'(x) = \lim_{h \to 0} (2x+h - 3)

f'(x) = 2x+0 - 3

f'(x) = 2x - 3

(iii) \frac{1}{x^2}

Solution:

f(x) = \frac{1}{x^2}\\ f(x) = \frac{1}{(x+h)^2}

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{(x+h)^2}-(\frac{1}{x^2})}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{x^2-(x+h)^2}{x^2(x+h)^2}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{x^2-(x^2+2xh+h^2)}{x^2(x+h)^2}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{x^2-x^2-2xh-h^2)}{x^2(x+h)^2}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{-2xh-h^2)}{x^2(x+h)^2}}{h}\\ f'(x) = \lim_{h \to 0} \frac{-2x-h)}{x^2(x+h)^2}\\ f'(x) = \frac{-2x-0)}{x^2(x+0)^2}\\ f'(x) = \frac{-2x}{x^2(x)^2}\\ f'(x) = \frac{-2}{x^3}

(iv) \frac{x+1}{x-1}

Solution:

f(x) = \frac{x+1}{x-1}\\ f(x) = \frac{(x+h)+1}{(x+h)-1}

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x+h)+1}{(x+h)-1}-(\frac{x+1}{x-1})}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x+h+1)(x-1)-(x+h-1)(x+1)}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x^2+hx+x)-(x+h+1)-[(x^2+hx-x)+(x+h-1)]}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x^2+hx+x-x-h-1)-(x^2+hx-x+x+h-1)}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x^2+hx+x-x-h-1-x^2-hx+x-x-h+1)}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(-h-h)}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{-2h}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{-2h}{h(x+h-1)(x-1)}\\ f'(x) = \lim_{h \to 0} \frac{-2}{(x+h-1)(x-1)}\\ f'(x) = \frac{-2}{(x-1)(x-1)}\\ f'(x) = \frac{-2}{(x-1)^2}\\

Question 5. For the function

f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + ......... + \frac{x^2}{2} + x + 1. 

Prove that f'(1) = 100 f'(0)

Solution:

Given,

f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + ......... + \frac{x^2}{2} + x + 1.

By using this, taking derivative both sides

f'(x) = \frac{d}{dx}(\frac{x^{100}}{100}) + \frac{d}{dx}(\frac{x^{99}}{99}) + ......... + \frac{d}{dx}(\frac{x^2}{2}) + \frac{d}{dx}(x) + \frac{d}{dx}(1)

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = \frac{100 x^{100-1}}{100} + \frac{99 x^{99-1}}{99} + ......... + \frac{2x^{2-1}}{2} + 1.x^{1-1} + \frac{d}{dx}(1)\\ f'(x) = \frac{100 x^{99}}{100} + \frac{99 x^{98}}{99} + ......... + \frac{2x^{1}}{2} + 1.x^{0} + 0\\ f'(x) = x^{99} + x^{98} + ......... +x^{1} + 1 + 0

Now, then

f'(1) = 1^{99} + 1^{98} + ......... +1^{1} + 1 + 0 = 100\\ f'(0) = 0^{99} + 0^{98} + ......... +0^{1} + 1 + 0 = 1

Hence, we conclude that

f'(1) = 100 f'(0)

Question 6. Find the derivative of xn + axn-1 + a2xn-2 + ...................+ an-1x + an for some fixed real number a.

Solution:

Given,

f(x) = xn + axn-1 + a2xn-2 + ...................+ an-1x + an

As, the derivative of xn is nxn-1 and derivative of constant is 0.

By using this, taking derivative both sides

\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^n + ax^{n-1} + a^2x^{n-2} + ...................+ a^{n-1}x + a^n)\\ f'(x) = \frac{d}{dx}(x^n) + \frac{d}{dx}(ax^{n-1}) + \frac{d}{dx}(a^2x^{n-2}) + ......... + \frac{d}{dx}(a^{n-1}x) + \frac{d}{dx}(a^n)\\ f'(x) = \frac{d}{dx}(x^n) + a\frac{d}{dx}(x^{n-1}) + a^2\frac{d}{dx}(x^{n-2}) + ......... + a^{n-1}\frac{d}{dx}(x) + a^n\frac{d}{dx}(1)\\ f'(x) = (nx^{n-1}) + a((n-1)x^{n-1-1}) + a^2((n-2)x^{n-2-1}) + ......... + a^{n-1}(1.(x)^{1-1}) + a^n(0)\\ f'(x) = (nx^{n-1}) + a((n-1)x^{n-2}) + a^2((n-2)x^{n-3}) + ......... + a^{n-1}(1) +0\\ f'(x) = nx^{n-1} + a(n-1)x^{n-2} + a^2(n-2)x^{n-3} + ......... + a^{n-1}

Question 7. For some constants a and b, find the derivative of

(i) (x-a) (x-b)

Solution:

f(x) = (x-a) (x-b)

f(x) = x2 - (a+b)x + ab

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^2 - (a+b)x + ab)\\ f'(x) = \frac{d}{dx}(x^2) - \frac{d}{dx}((a+b)x) + \frac{d}{dx}(ab)

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (2x^{2-1}) - (a+b)\frac{d}{dx}(x) + ab\frac{d}{dx}(1)\\ f'(x) = 2x^{1} - (a+b)(1x^{1-1}) + ab(0)\\ f'(x) = 2x - (a+b)(x^{0}) + 0\\ f'(x) = 2x - a - b

(ii) (ax2 + b)2

Solution:

f(x) = (ax2 + b)2

f(x) = (ax2)2 + 2(ax2)(b) + b2

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}((ax^2)^2 + 2(ax^2)(b) + b^2)

f'(x) = \frac{d}{dx}((ax^2)^2) + \frac{d}{dx}(2(ax^2)(b)) + \frac{d}{dx}(b^2)\\ f'(x) = \frac{d}{dx}(a^2x^4) + \frac{d}{dx}(2abx^2) + b^2\frac{d}{dx}(1)\\ f'(x) = a^2\frac{d}{dx}(x^4) + 2ab\frac{d}{dx}(x^2) + b^2(0)

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = a^2(4x^{4-1}) + 2ab(2x^{2-1}) + 0\\ f'(x) = a^2(4x^3) + 2ab(2x^1) + 0\\ f'(x) = 4a^2x^3 + 2ab(2x) + 0\\ f'(x) = 4a^2x^3 + 4abx

(iii) \frac{x-a}{x-b}

Solution:

f(x) = \frac{x-a}{x-b}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{x-a}{x-b})

Using quotient rule, we have

(\frac{u}{v})' = \frac{uv'-vu'}{u^2}\\ f'(x) = (\frac{(x-b)\frac{d}{dx}(x-a)-(x-a)\frac{d}{dx}(x-b)}{(x-b)^2})\\ f'(x) = (\frac{(x-b)(1)-(x-a)(1)}{(x-b)^2})\\ f'(x) = (\frac{(x-b-x+a)}{(x-b)^2})\\ f'(x) = (\frac{(a-b)}{(x-b)^2})

Question 8. Find the derivative of \frac{x^n-a^n}{x-a}   for some constant a.

Solution:

f(x) = \frac{x^n-a^n}{x-a}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{x^n-a^n}{x-a})

Using quotient rule, we have

(\frac{u}{v})' = \frac{uv'-vu'}{u^2}\\ f'(x) = (\frac{(x-a)\frac{d}{dx}(x^n-a^n)-(x^n-a^n)\frac{d}{dx}(x-a)}{(x-a)^2})\\ f'(x) = (\frac{(x-a)[\frac{d}{dx}(x^n)-\frac{d}{dx}(a^n)]-(x^n-a^n)(1)}{(x-a)^2})

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (\frac{(x-a)[(nx^{n-1})-0)]-(x^n-a^n)}{(x-a)^2})\\ f'(x) = (\frac{(x-a)(nx^{n-1})-x^n+a^n}{(x-a)^2})\\ f'(x) = (\frac{(nx^{n-1+1}-anx^{n-1})-x^n+a^n}{(x-a)^2})\\ f'(x) = (\frac{(nx^n-anx^{n-1})-x^n+a^n}{(x-a)^2})

Question 9. Find the derivative of

(i) 2x-\frac{3}{4}

Solution:

f(x) = 2x-\frac{3}{4}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(2x-\frac{3}{4}) f'(x) = \frac{d}{dx}(2x)-\frac{d}{dx}(\frac{3}{4})

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (2x0)-0

f'(x) = 2

(ii) (5x3 + 3x - 1)(x-1)

Solution:

f(x) = (5x3 + 3x - 1)(x-1)

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}((5x^3 + 3x - 1)(x-1))

Using product rule, we have

(uv)' = uv' + u'v

f'(x) = (5x^3 + 3x - 1)\frac{d}{dx}(x-1) + (x-1)\frac{d}{dx}(5x^3 + 3x - 1)

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (5x^3 + 3x - 1)(1) + (x-1)((3)5x^{3-1} + 3x^0 - 0)\\ f'(x) = (5x^3 + 3x - 1) + (x-1)(15x^2 + 3)\\ f'(x) = (5x^3 + 3x - 1) + (15x^3 + 3x-(15x^2)-3) \\ f'(x) = (5x^3 + 3x - 1) + (15x^3 + 3x-15x^2-3) \\ f'(x) = 20x^3 - 15x^2 + 6x - 4

(iii) x-3 (5+3x)

Solution:

f(x) = x-3 (5+3x)

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^{-3} (5+3x))

Using product rule, we have

(uv)' = uv' + u'v

f'(x) = (x^{-3})\frac{d}{dx}(5+3x) + (5+3x)\frac{d}{dx}(x^{-3})

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (x-3)(3) + (5+3x)(-3x^{-3-1})\\ f'(x) = (3x^{-3})+ (5+3x)(-3x^{-4})\\ f'(x) = (3x^{-3})+ (-15x^{-4}+3x(-3x^{-4}))\\ f'(x) = (3x^{-3})- 15x^{-4}-9x^{-4+1})\\ f'(x) = (3x^{-3}) -15x^{-4}-9x^{-3}\\ f'(x) = -6x^{-3} -15x^{-4}

(iv) x5 (3-6x-9)

Solution:

f(x) = x5 (3-6x-9)

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^5 (3-6x^{-9}))

Using product rule, we have

(uv)' = uv' + u'v

f'(x) = (x^5)\frac{d}{dx}(3-6x^{-9}) + (3-6x^{-9})\frac{d}{dx}(x^5)

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (x^5)[\frac{d}{dx}(3)-\frac{d}{dx}(6x^{-9})] + (3-6x^{-9})(5x^{5-1})\\ f'(x) = (x^5)[0-((-9)6x^{-9-1})] + (3-6x^{-9})(5x^{4})\\ f'(x) = (x^5)(54x^{-10}) + (3(5x^{4})-6x^{-9}(5x^{4}))\\ f'(x) = 54x^{-10+5} + (15x^{4} -30x^{-9+4})\\ f'(x) = 54x^{-5} + 15x^{4} -30x^{-5}\\ f'(x) = 24x^{-5} + 15x^{4}

(v) x-4 (3-4x-5)

Solution:

f(x) = x-4 (3-4x-5)

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^{-4} (3-4x^{-5}))

Using product rule, we have

(uv)' = uv' + u'v

f'(x) = (x^{-4})\frac{d}{dx}(3-4x^{-5}) + (3-4x^{-5})\frac{d}{dx}(x^{-4})

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = (x^{-4})[\frac{d}{dx}(3)-\frac{d}{dx}(4x^{-5})] + (3-4x^{-5})(-4x^{-4-1})\\ f'(x) = (x^{-4})[0-(4(-5)x^{-5-1})] + (3-4x^{-5})(-4x^{-5})\\ f'(x) = (x^{-4})[20x^{-6})] + (3(-4x^{-5})-4x^{-5}(-4x^{-5}))\\ f'(x) = (20x^{-6-4}) + (-12x^{-5}-16x^{-5-5})\\ f'(x) = (20x^{-10}) - 12x^{-3} - 16x^{-12})\\ f'(x) = 36x^{-10} - 12x^{-3}

(vi) \frac{2}{x+1} - \frac{x^2}{3x-1}

Solution:

f(x) = \frac{2}{x+1} - \frac{x^2}{3x-1}

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{2}{x+1} - \frac{x^2}{3x-1})

Using quotient rule, we have

(\frac{u}{v})' = \frac{uv'-vu'}{u^2}\\ f'(x) = [\frac{(x+1)\frac{d}{dx}(2)-(2)\frac{d}{dx}(x+1)}{(x+1)^2})] - [\frac{(3x-1)\frac{d}{dx}(x^2)-(x^2)\frac{d}{dx}(3x-1)}{(3x-1)^2})]

As, the derivative of xn is nxn-1 and derivative of constant is 0.

f'(x) = [\frac{(x+1)(0)-(2)(1)}{(x+1)^2})] - [\frac{(3x-1)(2x^{2-1})-(x^2)(3)}{(3x-1)^2})]\\ f'(x) = [\frac{-2}{(x+1)^2})] - [\frac{(3x-1)(2x)-(x^2)(3)}{(3x-1)^2})]\\ f'(x) = [\frac{-2}{(x+1)^2})] - [\frac{(6x^2-2x)-3x^2)}{(3x-1)^2})]\\ f'(x) = \frac{-2}{(x+1)^2}) - \frac{(3x^2-2x)}{(3x-1)^2})

Question 10. Find the derivative of cos x from first principle.

Solution:

Here, f(x) = cos x

f(x+h) = cos (x+h)

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{cos (x+h)-cos x}{h}

Using the trigonometric identity,

cos a - cos b = -2 sin (\frac{a+b}{2})    sin (\frac{a-b}{2})

f'(x) = \lim_{h \to 0} \frac{-2 sin (\frac{x+h+x}{2}) sin (\frac{x+h-x}{2})}{h}\\ f'(x) = \lim_{h \to 0} \frac{-2 sin (\frac{2x+h}{2}) sin (\frac{h}{2})}{h}\\ f'(x) = \lim_{h \to 0} (-2 sin (\frac{2x+h}{2})) \lim_{h \to 0}\frac{sin (\frac{h}{2})}{h}

Multiplying and dividing by 2,

f'(x) = \lim_{h \to 0} (-2 sin (\frac{2x+h}{2})) \lim_{h \to 0}\frac{sin (\frac{h}{2})}{h} \times \frac{2}{2}\\ f'(x) = \lim_{h \to 0} (-2 sin (\frac{2x+h}{2})) \lim_{h \to 0}\frac{sin (\frac{h}{2})}{\frac{h}{2}} \times \frac{1}{2}\\ f'(x) = (-sin (\frac{2x+0}{2})) \lim_{h \to 0}\frac{sin (\frac{h}{2})}{\frac{h}{2}}

f'(x) = -sin (x) (1)

f'(x) = -sin x

Question 11. Find the derivative of the following functions:

(i) sin x cos x

Solution:

f(x) = sin x cos x

f(x+h) = sin (x+h) cos (x+h)

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{sin (x+h) cos (x+h)-sin x \hspace{0.1cm}cos x}{h}

Using the trigonometric identity,

sin A cos B = \frac{1}{2}   (sin (A+B) + sin(A-B))

f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(sin (x+h+x+h) + sin(x+h-(x+h)))-(sin (x+x) + sin(x-x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(sin (2x+2h) + sin(0))-(sin 2x + sin(0)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(sin (2x+2h))-(sin 2x)}{h}\\

Using the trigonometric identity,

sin A - sin B = 2 cos (\frac{A+B}{2})    sin (\frac{A-B}{2})

f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(2 cos (\frac{2x+2h+2x}{2})sin (\frac{2x+2h-2x}{2})}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(2 cos (2x+h)sin (h)}{h}\\ f'(x) = \lim_{h \to 0} \frac{1}{2}(2 cos (2x+h)) \lim_{h \to 0} \frac{sin (h)}{h}\\ f'(x) = cos (2x+0) (1)\\ f'(x) = cos 2x

(ii) sec x 

Solution:

f(x) = sec x = \frac{1}{cos x}

f(x+h) = \frac{1}{cos (x+h)}

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{cos (x+h)}-\frac{1}{cos x}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{cos x-cos (x+h)}{cos (x+h)cos x}}{h}\\ f'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{\frac{cos x-cos (x+h)}{cos (x+h)}}{h}

Using the trigonometric identity,

cos a - cos b = -2 sin (\frac{a+b}{2})    sin (\frac{a-b}{2})

f'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{\frac{-2 sin (\frac{x+x+h}{2}) sin (\frac{x-(x+h)}{2})}{cos (x+h)}}{h}\\ f'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{-2 sin (\frac{2x+h}{2}) sin (\frac{-h}{2})}{hcos (x+h)}\\ f'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2})}{hcos (x+h)}\\ f'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2})}{cos (x+h)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{h}

Multiply and divide by 2, we have

f'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2})}{cos (x+h)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{h} \times \frac{2}{2}\\ f'(x) = \frac{2}{cos x} \frac{sin (\frac{2x+0}{2})}{cos (x+0)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}} \times \frac{1}{2}\\ f'(x) = \frac{1}{cos x}(\frac{sin (x)}{cos (x)}) \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}}\\ f'(x) = \frac{tan x}{cos x}(1) \\ f'(x) = tan x \hspace{0.1cm}sec x

(iii) 5 sec x + 4 cos x

Solution:

f(x) = 5 sec x + 4 cos x

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(5 sec x + 4 cos x)\\ f'(x) = \frac{d}{dx}(5 sec x) + \frac{d}{dx}(4 cos x)\\ f'(x) = 5\frac{d}{dx}(sec x) + 4 \frac{d}{dx}(cos x)

f'(x) = 5 (tan x sec x) + 4 (-sin x)

f'(x) = 5 tan x sec x - 4 sin x

(iv) cosec x 

Solution:

f(x) = cosec x = \frac{1}{sin x}

f(x+h) = \frac{1}{sin (x+h)}

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{sin (x+h)}-\frac{1}{sin x}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{sin x-sin (x+h)}{sin (x+h)sin x}}{h}

Using the trigonometric identity,

sin a - sin b = 2 cos (\frac{a+b}{2})    sin (\frac{a-b}{2})

f'(x) = \frac{1}{sin x}\lim_{h \to 0} \frac{\frac{2 cos (\frac{x+x+h}{2}) sin (\frac{x-(x+h)}{2})}{sin (x+h)}}{h}\\ f'(x) = \frac{1}{sin x}\lim_{h \to 0} \frac{2 cos (\frac{2x+h}{2}) sin (\frac{-h}{2})}{hsin (x+h)}\\ f'(x) = \frac{2}{sin x}\lim_{h \to 0} \frac{cos (\frac{2x+h}{2}) (-sin (\frac{h}{2})}{hsin (x+h)}\\ f'(x) = \frac{-2}{sin x}\lim_{h \to 0} \frac{cos (\frac{2x+h}{2})}{sin (x+h)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{h}

Multiply and divide by 2, we have

f'(x) = \frac{-2}{sin x}\lim_{h \to 0} \frac{cos (\frac{2x+h}{2})}{sin (x+h)}\lim_{h \to 0} \frac{sin (\frac{h}{2})}{h}\times \frac{2}{2}\\ f'(x) = \frac{-2}{sin x} \frac{cos (\frac{2x+0}{2})}{sin (x+0)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}} \times \frac{1}{2}\\ f'(x) = \frac{-1}{sin x}(\frac{cos (x)}{sin (x)}) \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}}\\ f'(x) = \frac{-cot x}{sin x}(1)\\ f'(x) = -cot x\hspace{0.1cm} cosec x

(v) 3 cot x + 5 cosec x

Solution:

f(x) = 3 cot x + 5 cosec x

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(3 cot x + 5 cosec x)

f'(x) = \frac{d}{dx}(3 cot\hspace{0.1cm} x) + \frac{d}{dx}(5 cosec\hspace{0.1cm} x)

f'(x) = 3 g'(x) + 5 \frac{d}{dx}(cosec \hspace{0.1cm}x)

Here, 

g(x) = cot x = \frac{cos x}{sin x}

g(x+h) = \frac{cos (x+h)}{sin (x+h)}

From the first principle,

g'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{cos (x+h)}{sin (x+h)}-\frac{cos x}{sin x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{sin x cos(x+h)-cos x sin (x+h)}{sin (x+h)sin x}}{h}

Using the trigonometric identity,

sin a cos b - cos a sin b = sin (a-b)

g'(x) = \lim_{h \to 0} \frac{\frac{sin (x -(x+h))}{sin (x+h)sin x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{sin (-h)}{h sin (x+h)sin x}\\ g'(x) = \lim_{h \to 0} \frac{-sin h}{h sin (x+h)sin x}\\ g'(x) = \frac{-1}{sin x} (\lim_{h \to 0} \frac{1}{sin(x+h)}) (\lim_{h \to 0} \frac{sin h}{h})\\ g'(x) = \frac{-1}{sin x} \frac{1}{sin(x+0)} (1)\\ g'(x) = \frac{-1}{sin^2 x}\\ g'(x) = - cosec^2x

So, now

f'(x) = 3 g'(x) + 5 \frac{d}{dx}(cosec\hspace{0.1cm} x)

f'(x) = 3 (- cosec2 x) + 5 (-cot x cosec x)

f'(x) = - 3cosec2 x - 5 cot x cosec x

(vi) 5 sin x - 6 cos x + 7

Solution:

f(x) = 5 sin x - 6 cos x + 7

f(x+h) = 5 sin (x+h) - 6 cos (x+h) + 7

From the first principle,

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 sin (x+h) - 6 cos (x+h) + 7-(5 sin x - 6 cos x + 7)}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 sin (x+h) - 6 cos (x+h) + 7 - 5 sin x + 6 cos x - 7}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 (sin (x+h) - sin x) - 6 (cos (x+h) - cos x) + 7 - 7}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 (sin (x+h) - sin x) - 6 (cos (x+h) - cos x)}{h}

Using the trigonometric identity,

sin a - sin b = 2 cos (\frac{a+b}{2})    sin (\frac{a-b}{2})

cos a - cos b = -2 sin (\frac{a+b}{2})    sin (\frac{a-b}{2})

f'(x) = \lim_{h \to 0} \frac{5 (2 cos (\frac{x+h+x}{2}) sin (\frac{x+h-x}{2})) - 6 (-2 sin (\frac{x+h+x}{2}) sin (\frac{x+h-x}{2}))}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 (2 cos (\frac{2x+h}{2}) sin (\frac{h}{2})) - 6 (-2 sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{h}\\ f'(x) = \lim_{h \to 0} (\frac{10 cos (\frac{2x+h}{2}) sin (\frac{h}{2}) + 12 sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{h})\\ f'(x) = 10 \lim_{h \to 0} \frac{cos (\frac{2x+h}{2}) sin (\frac{h}{2})}{h} + 12 \lim_{h \to 0}  (\frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{h})

Multiply and divide by 2, we get

f'(x) = \frac{2}{2}[10 \lim_{h \to 0} \frac{cos (\frac{2x+h}{2}) sin (\frac{h}{2})}{h} + 12 \lim_{h \to 0}  (\frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{h})]\\ f'(x) = \frac{1}{2}[10 \lim_{h \to 0} \frac{cos (\frac{2x+h}{2}) sin (\frac{h}{2})}{\frac{h}{2}} + 12 \lim_{h \to 0}  (\frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{\frac{h}{2}})]\\ f'(x) = 5 cos (\frac{2x+0}{2}) \lim_{h \to 0}\frac{ sin (\frac{h}{2})}{\frac{h}{2}} + 6  (sin (\frac{2x+0}{2}) \lim_{h \to 0} \frac{sin (\frac{h}{2}))}{\frac{h}{2}})

f'(x) = 5 cos x (1) + 6  sin x (1)

f'(x) = 5 cos x + 6  sin x 

(vii) 2 tan x - 7 sec x 

Solution:

f(x) = 2 tan x - 7 sec x 

Taking derivative both sides,

\frac{d}{dx}(f(x)) = \frac{d}{dx}(2\hspace{0.1cm} tan \hspace{0.1cm}x - 7\hspace{0.1cm} sec\hspace{0.1cm} x )

f'(x) = \frac{d}{dx}(2 \hspace{0.1cm}tan \hspace{0.1cm}x) - \frac{d}{dx}(7\hspace{0.1cm} sec\hspace{0.1cm} x)

f'(x) = 2 g'(x) - 7 \frac{d}{dx}(sec\hspace{0.1cm} x)

Here,

g(x) = tan x = \frac{sin \hspace{0.1cm}x}{cos \hspace{0.1cm}x}

g(x+h) = \frac{sin (x+h)}{cos (x+h)}

From the first principle,

g'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h)}{cos (x+h)}-\frac{sin\hspace{0.1cm} x}{cos\hspace{0.1cm} x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{cos \hspace{0.1cm}x \hspace{0.1cm}sin (x+h)-sin\hspace{0.1cm} x \hspace{0.1cm}cos(x+h)}{cos (x+h)cos \hspace{0.1cm}x}}{h}

Using the trigonometric identity,

sin a cos b - cos a sin b = sin (a-b)

g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h -x)}{cos (x+h)cos x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{sin (h)}{h \hspace{0.1cm}cos (x+h)\hspace{0.1cm}cos\hspace{0.1cm} x}\\ g'(x) = \frac{1}{cos\hspace{0.1cm} x} (\lim_{h \to 0} \frac{1}{cos(x+h)}) (\lim_{h \to 0} \frac{sin h}{h})\\ g'(x) = \frac{1}{cos \hspace{0.1cm}x} \frac{1}{cos(x+0)} (1)\\ g'(x) = \frac{1}{cos^2 x}

g'(x) = sec2x

So, now

f'(x) = 2 g'(x) - 7 \frac{d}{dx}(sec \hspace{0.1cm} x)

f'(x) = 2 (sec2x) - 7 (sec x tan x)

f'(x) = 2sec2x - 7 sec x tan x


Next Article
Class 11 NCERT Solutions - Chapter 13 Limits And Derivatives - Exercise 13.2

S

shristiag18
Improve
Article Tags :
  • Mathematics
  • School Learning
  • Class 11
  • CBSE - Class 11
  • Maths-Class-11

Similar Reads

  • Class 11 NCERT Solutions - Chapter 13 Limits And Derivatives - Exercise 13.2
    Question 1. Find the derivative of x2 – 2 at x = 10. Solution: f(x) = x2 – 2 f(x+h) = (x+h)2 – 2 From the first principle, [Tex]f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}[/Tex] When, x = 10 [Tex]f'(10) = \lim_{h \to 0} (\frac{f(10+h)-f(10)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{((10+h)^2-2) - (10^2
    15 min read
  • NCERT Solutions Class 11 - Chapter 12 Limits And Derivatives - Exercise 12.1
    Evaluate the following limits in Exercises 1 to 22.Question 1: [Tex]\lim_{x \to 3} x+3[/Tex]Solution: In [Tex]\lim_{x \to 3} x+3[/Tex], as x⇢3 Put x = 3, we get [Tex]\lim_{x \to 3} x+3[/Tex] = 3+3 = 6 Question 2: [Tex]\lim_{x \to \pi} (x-\frac{22}{7})[/Tex]Solution: In [Tex]\lim_{x \to \pi} (x-\frac
    13 min read
  • Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives - Exercise 13.1 | Set 2
    Question 17:[Tex]\lim_{x \to 0} \frac{cos \hspace{0.1cm}2x-1}{cos \hspace{0.1cm}x-1}[/Tex] Solution: In[Tex]\lim_{x \to 0} \frac{cos \hspace{0.1cm}2x-1}{cos \hspace{0.1cm}x-1} [/Tex], as x⇢0 As we know, cos 2θ = 1-2sin2θ Substituting the values, we get [Tex]\lim_{x \to 0} \frac{1-2sin^2x-1}{1-2sin^2
    9 min read
  • Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives - Exercise 13.1 | Set 1
    Evaluate the following limits in Exercises 1 to 22.Question 1: [Tex]\lim_{x \to 3} x+3[/Tex] Solution: In [Tex]\lim_{x \to 3} x+3[/Tex], as x⇢3 Put x = 3, we get [Tex]\lim_{x \to 3} x+3[/Tex] = 3+3 = 6 Question 2: [Tex]\lim_{x \to \pi} (x-\frac{22}{7})[/Tex] Solution: In [Tex]\lim_{x \to \pi} (x-\fr
    5 min read
  • NCERT Solutions Class 11 - Chapter 12 Limits And Derivatives - Miscellaneous Exercise
    Question 1: Find the derivative of the following functions from first principle:(i) -xSolution: f(x) = -x f(x+h) = -(x+h) From the first principle, [Tex]f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} (\frac{-(x+h)-(-x)}{h})\\ f'(x) = \lim_{h \to 0} (\frac{-x-h+x}{h})\\ f'(x) =
    15+ min read
  • Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives - Miscellaneous Exercise on Chapter 13 | Set 2
    Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): Question 16: [Tex]\frac{cos x}{1+sin x}[/Tex] Solution: [Tex]f(x) = \frac{cos x}{1+sin x}[/Tex] Taking derivative both sides, [Tex]\frac{d}{dx
    15 min read
  • Class 11 RD Sharma Solutions - Chapter 30 Derivatives - Exercise 30.2 | Set 2
    Derivatives are a fundamental concept in calculus that measures how a function changes as its input changes. They represent the rate of change or slope of the function at any given point. Understanding derivatives is crucial for solving problems related to motion, optimization, and modeling real-wor
    7 min read
  • Class 11 RD Sharma Solutions - Chapter 31 Derivatives - Exercise 31.4
    Question 1. Write the negation of each of the following statements:(i) For every x ∈ N, x + 3 > 10(ii) There exists x ∈ N, x + 3 = 10Solution: (i) The negation of the statement is “There exist x ∈ N, such that x + 3 <= 10.” (ii) The negation of the statement is “There exist x ∈ N, such that x
    2 min read
  • Class 11 RD Sharma Solutions - Chapter 31 Derivatives - Exercise 31.2
    Question 1. Write the negation of the following statement: (i) Bangalore is the capital of Karnataka. (ii) It rained on July 4, 2005. (iii) Ravish is honest. (iv) The earth is round. (v) The sun is cold. Solution: (i) Bangalore is not the capital of Karnataka or It is false that “Bangalore is the ca
    3 min read
  • Class 11 RD Sharma Solutions- Chapter 30 Derivatives - Exercise 30.1
    Question 1. Find the derivative of f(x) = 3x at x = 2 Solution: Given: f(x)=3x By using the derivative formula, [Tex]f'(a)= \lim_{h \to 0} \frac {f(a+h)-f(a)} h [/Tex] {where h is a small positive number} Derivative of f(x)=3x at x=2 is given as: [Tex]f'(2)= \lim_{h \to 0} \frac {f(2+h)-f(2)} h[/Tex
    7 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences