Question 1. Find the derivative of x2 – 2 at x = 10.
Solution:
f(x) = x2 – 2
f(x+h) = (x+h)2 – 2
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}
When, x = 10
f'(10) = \lim_{h \to 0} (\frac{f(10+h)-f(10)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{((10+h)^2-2) - (10^2-2)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{((10^2+2(10)h+h^2)-2) - (10^2-2)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{(10^2+2(10)h+h^2-2 - 10^2+2)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{(20h+h^2)}{h})\\ f'(10) = \lim_{h \to 0} (20 + h)
f'(10) = 20 + 0
f'(10) = 20
Question 2. Find the derivative of x at x = 1.
Solution:
f(x) = x
f(x+h) = x+h
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}
When, x = 1
f'(1) = \lim_{h \to 0} (\frac{f(1+h)-f(1)}{h})\\ f'(1) = \lim_{h \to 0} (\frac{(1+h) - (1)}{h})\\ f'(1) = \lim_{h \to 0} (\frac{(1+h - 1)}{h})\\ f'(1) = \lim_{h \to 0} (\frac{h}{h})\\ f'(1) = \lim_{h \to 0} (1)
f'(1) = 1
Question 3. Find the derivative of 99x at x = l00.
Solution:
f(x) = 99x
f(x+h) = 99(x+h)
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}
When, x = 10
f'(100) = \lim_{h \to 0} (\frac{f(100+h)-f(100)}{h})\\ f'(100) = \lim_{h \to 0} (\frac{((99(100+h) - (99(100))}{h})\\ f'(100) = \lim_{h \to 0} (\frac{(9900+99h - 9900)}{h})\\ f'(100) = \lim_{h \to 0} (\frac{99h}{h})\\ f'(100) = \lim_{h \to 0} (99)
f'(100) = 99
Question 4. Find the derivative of the following functions from first principle.
(i) x3 − 27
Solution:
f(x) = x3 – 27
f(x+h) = (x+h)3 – 27
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x+h)^3 – 27-(x^3 – 27)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x+h)^3 -x^3}{h}\\ f'(x) = \lim_{h \to 0} \frac{x^3+h^3+3xh(x+h)-x^3}{h}\\ f'(x) = \lim_{h \to 0} \frac{h^3+3xh(x+h)}{h}\\ f'(x) = \lim_{h \to 0} (h^2+3x(x+h))
f'(x) = 02+3x(x+0)
f'(x) = 3x2
(ii) (x-1) (x-2)
Solution:
f(x) = (x-1) (x-2) = x2 - 3x + 2
f(x) = (x+h)2 - 3(x+h) + 2
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) + 2-(x^2 - 3x + 2)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) + 2-x^2 + 3x - 2)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(x^2+2xh+h^2 - 3x - 3h + 2-x^2 + 3x - 2)}{h}\\ f'(x) = \lim_{h \to 0} \frac{(2xh+h^2 - 3h)}{h}\\ f'(x) = \lim_{h \to 0} (2x+h - 3)
f'(x) = 2x+0 - 3
f'(x) = 2x - 3
(iii) \frac{1}{x^2}
Solution:
f(x) = \frac{1}{x^2}\\ f(x) = \frac{1}{(x+h)^2}
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{(x+h)^2}-(\frac{1}{x^2})}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{x^2-(x+h)^2}{x^2(x+h)^2}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{x^2-(x^2+2xh+h^2)}{x^2(x+h)^2}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{x^2-x^2-2xh-h^2)}{x^2(x+h)^2}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{-2xh-h^2)}{x^2(x+h)^2}}{h}\\ f'(x) = \lim_{h \to 0} \frac{-2x-h)}{x^2(x+h)^2}\\ f'(x) = \frac{-2x-0)}{x^2(x+0)^2}\\ f'(x) = \frac{-2x}{x^2(x)^2}\\ f'(x) = \frac{-2}{x^3}
(iv) \frac{x+1}{x-1}
Solution:
f(x) = \frac{x+1}{x-1}\\ f(x) = \frac{(x+h)+1}{(x+h)-1}
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x+h)+1}{(x+h)-1}-(\frac{x+1}{x-1})}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x+h+1)(x-1)-(x+h-1)(x+1)}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x^2+hx+x)-(x+h+1)-[(x^2+hx-x)+(x+h-1)]}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x^2+hx+x-x-h-1)-(x^2+hx-x+x+h-1)}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(x^2+hx+x-x-h-1-x^2-hx+x-x-h+1)}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{(-h-h)}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{-2h}{(x+h-1)(x-1)}}{h}\\ f'(x) = \lim_{h \to 0} \frac{-2h}{h(x+h-1)(x-1)}\\ f'(x) = \lim_{h \to 0} \frac{-2}{(x+h-1)(x-1)}\\ f'(x) = \frac{-2}{(x-1)(x-1)}\\ f'(x) = \frac{-2}{(x-1)^2}\\
Question 5. For the function
f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + ......... + \frac{x^2}{2} + x + 1.
Prove that f'(1) = 100 f'(0)
Solution:
Given,
f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + ......... + \frac{x^2}{2} + x + 1.
By using this, taking derivative both sides
f'(x) = \frac{d}{dx}(\frac{x^{100}}{100}) + \frac{d}{dx}(\frac{x^{99}}{99}) + ......... + \frac{d}{dx}(\frac{x^2}{2}) + \frac{d}{dx}(x) + \frac{d}{dx}(1)
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = \frac{100 x^{100-1}}{100} + \frac{99 x^{99-1}}{99} + ......... + \frac{2x^{2-1}}{2} + 1.x^{1-1} + \frac{d}{dx}(1)\\ f'(x) = \frac{100 x^{99}}{100} + \frac{99 x^{98}}{99} + ......... + \frac{2x^{1}}{2} + 1.x^{0} + 0\\ f'(x) = x^{99} + x^{98} + ......... +x^{1} + 1 + 0
Now, then
f'(1) = 1^{99} + 1^{98} + ......... +1^{1} + 1 + 0 = 100\\ f'(0) = 0^{99} + 0^{98} + ......... +0^{1} + 1 + 0 = 1
Hence, we conclude that
f'(1) = 100 f'(0)
Question 6. Find the derivative of xn + axn-1 + a2xn-2 + ...................+ an-1x + an for some fixed real number a.
Solution:
Given,
f(x) = xn + axn-1 + a2xn-2 + ...................+ an-1x + an
As, the derivative of xn is nxn-1 and derivative of constant is 0.
By using this, taking derivative both sides
\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^n + ax^{n-1} + a^2x^{n-2} + ...................+ a^{n-1}x + a^n)\\ f'(x) = \frac{d}{dx}(x^n) + \frac{d}{dx}(ax^{n-1}) + \frac{d}{dx}(a^2x^{n-2}) + ......... + \frac{d}{dx}(a^{n-1}x) + \frac{d}{dx}(a^n)\\ f'(x) = \frac{d}{dx}(x^n) + a\frac{d}{dx}(x^{n-1}) + a^2\frac{d}{dx}(x^{n-2}) + ......... + a^{n-1}\frac{d}{dx}(x) + a^n\frac{d}{dx}(1)\\ f'(x) = (nx^{n-1}) + a((n-1)x^{n-1-1}) + a^2((n-2)x^{n-2-1}) + ......... + a^{n-1}(1.(x)^{1-1}) + a^n(0)\\ f'(x) = (nx^{n-1}) + a((n-1)x^{n-2}) + a^2((n-2)x^{n-3}) + ......... + a^{n-1}(1) +0\\ f'(x) = nx^{n-1} + a(n-1)x^{n-2} + a^2(n-2)x^{n-3} + ......... + a^{n-1}
Question 7. For some constants a and b, find the derivative of
(i) (x-a) (x-b)
Solution:
f(x) = (x-a) (x-b)
f(x) = x2 - (a+b)x + ab
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^2 - (a+b)x + ab)\\ f'(x) = \frac{d}{dx}(x^2) - \frac{d}{dx}((a+b)x) + \frac{d}{dx}(ab)
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = (2x^{2-1}) - (a+b)\frac{d}{dx}(x) + ab\frac{d}{dx}(1)\\ f'(x) = 2x^{1} - (a+b)(1x^{1-1}) + ab(0)\\ f'(x) = 2x - (a+b)(x^{0}) + 0\\ f'(x) = 2x - a - b
(ii) (ax2 + b)2
Solution:
f(x) = (ax2 + b)2
f(x) = (ax2)2 + 2(ax2)(b) + b2
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}((ax^2)^2 + 2(ax^2)(b) + b^2)
f'(x) = \frac{d}{dx}((ax^2)^2) + \frac{d}{dx}(2(ax^2)(b)) + \frac{d}{dx}(b^2)\\ f'(x) = \frac{d}{dx}(a^2x^4) + \frac{d}{dx}(2abx^2) + b^2\frac{d}{dx}(1)\\ f'(x) = a^2\frac{d}{dx}(x^4) + 2ab\frac{d}{dx}(x^2) + b^2(0)
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = a^2(4x^{4-1}) + 2ab(2x^{2-1}) + 0\\ f'(x) = a^2(4x^3) + 2ab(2x^1) + 0\\ f'(x) = 4a^2x^3 + 2ab(2x) + 0\\ f'(x) = 4a^2x^3 + 4abx
(iii) \frac{x-a}{x-b}
Solution:
f(x) = \frac{x-a}{x-b}
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{x-a}{x-b})
Using quotient rule, we have
(\frac{u}{v})' = \frac{uv'-vu'}{u^2}\\ f'(x) = (\frac{(x-b)\frac{d}{dx}(x-a)-(x-a)\frac{d}{dx}(x-b)}{(x-b)^2})\\ f'(x) = (\frac{(x-b)(1)-(x-a)(1)}{(x-b)^2})\\ f'(x) = (\frac{(x-b-x+a)}{(x-b)^2})\\ f'(x) = (\frac{(a-b)}{(x-b)^2})
Question 8. Find the derivative of \frac{x^n-a^n}{x-a} for some constant a.
Solution:
f(x) = \frac{x^n-a^n}{x-a}
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{x^n-a^n}{x-a})
Using quotient rule, we have
(\frac{u}{v})' = \frac{uv'-vu'}{u^2}\\ f'(x) = (\frac{(x-a)\frac{d}{dx}(x^n-a^n)-(x^n-a^n)\frac{d}{dx}(x-a)}{(x-a)^2})\\ f'(x) = (\frac{(x-a)[\frac{d}{dx}(x^n)-\frac{d}{dx}(a^n)]-(x^n-a^n)(1)}{(x-a)^2})
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = (\frac{(x-a)[(nx^{n-1})-0)]-(x^n-a^n)}{(x-a)^2})\\ f'(x) = (\frac{(x-a)(nx^{n-1})-x^n+a^n}{(x-a)^2})\\ f'(x) = (\frac{(nx^{n-1+1}-anx^{n-1})-x^n+a^n}{(x-a)^2})\\ f'(x) = (\frac{(nx^n-anx^{n-1})-x^n+a^n}{(x-a)^2})
Question 9. Find the derivative of
(i) 2x-\frac{3}{4}
Solution:
f(x) = 2x-\frac{3}{4}
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(2x-\frac{3}{4}) f'(x) = \frac{d}{dx}(2x)-\frac{d}{dx}(\frac{3}{4})
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = (2x0)-0
f'(x) = 2
(ii) (5x3 + 3x - 1)(x-1)
Solution:
f(x) = (5x3 + 3x - 1)(x-1)
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}((5x^3 + 3x - 1)(x-1))
Using product rule, we have
(uv)' = uv' + u'v
f'(x) = (5x^3 + 3x - 1)\frac{d}{dx}(x-1) + (x-1)\frac{d}{dx}(5x^3 + 3x - 1)
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = (5x^3 + 3x - 1)(1) + (x-1)((3)5x^{3-1} + 3x^0 - 0)\\ f'(x) = (5x^3 + 3x - 1) + (x-1)(15x^2 + 3)\\ f'(x) = (5x^3 + 3x - 1) + (15x^3 + 3x-(15x^2)-3) \\ f'(x) = (5x^3 + 3x - 1) + (15x^3 + 3x-15x^2-3) \\ f'(x) = 20x^3 - 15x^2 + 6x - 4
(iii) x-3 (5+3x)
Solution:
f(x) = x-3 (5+3x)
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^{-3} (5+3x))
Using product rule, we have
(uv)' = uv' + u'v
f'(x) = (x^{-3})\frac{d}{dx}(5+3x) + (5+3x)\frac{d}{dx}(x^{-3})
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = (x-3)(3) + (5+3x)(-3x^{-3-1})\\ f'(x) = (3x^{-3})+ (5+3x)(-3x^{-4})\\ f'(x) = (3x^{-3})+ (-15x^{-4}+3x(-3x^{-4}))\\ f'(x) = (3x^{-3})- 15x^{-4}-9x^{-4+1})\\ f'(x) = (3x^{-3}) -15x^{-4}-9x^{-3}\\ f'(x) = -6x^{-3} -15x^{-4}
(iv) x5 (3-6x-9)
Solution:
f(x) = x5 (3-6x-9)
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^5 (3-6x^{-9}))
Using product rule, we have
(uv)' = uv' + u'v
f'(x) = (x^5)\frac{d}{dx}(3-6x^{-9}) + (3-6x^{-9})\frac{d}{dx}(x^5)
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = (x^5)[\frac{d}{dx}(3)-\frac{d}{dx}(6x^{-9})] + (3-6x^{-9})(5x^{5-1})\\ f'(x) = (x^5)[0-((-9)6x^{-9-1})] + (3-6x^{-9})(5x^{4})\\ f'(x) = (x^5)(54x^{-10}) + (3(5x^{4})-6x^{-9}(5x^{4}))\\ f'(x) = 54x^{-10+5} + (15x^{4} -30x^{-9+4})\\ f'(x) = 54x^{-5} + 15x^{4} -30x^{-5}\\ f'(x) = 24x^{-5} + 15x^{4}
(v) x-4 (3-4x-5)
Solution:
f(x) = x-4 (3-4x-5)
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(x^{-4} (3-4x^{-5}))
Using product rule, we have
(uv)' = uv' + u'v
f'(x) = (x^{-4})\frac{d}{dx}(3-4x^{-5}) + (3-4x^{-5})\frac{d}{dx}(x^{-4})
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = (x^{-4})[\frac{d}{dx}(3)-\frac{d}{dx}(4x^{-5})] + (3-4x^{-5})(-4x^{-4-1})\\ f'(x) = (x^{-4})[0-(4(-5)x^{-5-1})] + (3-4x^{-5})(-4x^{-5})\\ f'(x) = (x^{-4})[20x^{-6})] + (3(-4x^{-5})-4x^{-5}(-4x^{-5}))\\ f'(x) = (20x^{-6-4}) + (-12x^{-5}-16x^{-5-5})\\ f'(x) = (20x^{-10}) - 12x^{-3} - 16x^{-12})\\ f'(x) = 36x^{-10} - 12x^{-3}
(vi) \frac{2}{x+1} - \frac{x^2}{3x-1}
Solution:
f(x) = \frac{2}{x+1} - \frac{x^2}{3x-1}
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(\frac{2}{x+1} - \frac{x^2}{3x-1})
Using quotient rule, we have
(\frac{u}{v})' = \frac{uv'-vu'}{u^2}\\ f'(x) = [\frac{(x+1)\frac{d}{dx}(2)-(2)\frac{d}{dx}(x+1)}{(x+1)^2})] - [\frac{(3x-1)\frac{d}{dx}(x^2)-(x^2)\frac{d}{dx}(3x-1)}{(3x-1)^2})]
As, the derivative of xn is nxn-1 and derivative of constant is 0.
f'(x) = [\frac{(x+1)(0)-(2)(1)}{(x+1)^2})] - [\frac{(3x-1)(2x^{2-1})-(x^2)(3)}{(3x-1)^2})]\\ f'(x) = [\frac{-2}{(x+1)^2})] - [\frac{(3x-1)(2x)-(x^2)(3)}{(3x-1)^2})]\\ f'(x) = [\frac{-2}{(x+1)^2})] - [\frac{(6x^2-2x)-3x^2)}{(3x-1)^2})]\\ f'(x) = \frac{-2}{(x+1)^2}) - \frac{(3x^2-2x)}{(3x-1)^2})
Question 10. Find the derivative of cos x from first principle.
Solution:
Here, f(x) = cos x
f(x+h) = cos (x+h)
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{cos (x+h)-cos x}{h}
Using the trigonometric identity,
cos a - cos b = -2 sin (\frac{a+b}{2}) sin (\frac{a-b}{2})
f'(x) = \lim_{h \to 0} \frac{-2 sin (\frac{x+h+x}{2}) sin (\frac{x+h-x}{2})}{h}\\ f'(x) = \lim_{h \to 0} \frac{-2 sin (\frac{2x+h}{2}) sin (\frac{h}{2})}{h}\\ f'(x) = \lim_{h \to 0} (-2 sin (\frac{2x+h}{2})) \lim_{h \to 0}\frac{sin (\frac{h}{2})}{h}
Multiplying and dividing by 2,
f'(x) = \lim_{h \to 0} (-2 sin (\frac{2x+h}{2})) \lim_{h \to 0}\frac{sin (\frac{h}{2})}{h} \times \frac{2}{2}\\ f'(x) = \lim_{h \to 0} (-2 sin (\frac{2x+h}{2})) \lim_{h \to 0}\frac{sin (\frac{h}{2})}{\frac{h}{2}} \times \frac{1}{2}\\ f'(x) = (-sin (\frac{2x+0}{2})) \lim_{h \to 0}\frac{sin (\frac{h}{2})}{\frac{h}{2}}
f'(x) = -sin (x) (1)
f'(x) = -sin x
Question 11. Find the derivative of the following functions:
(i) sin x cos x
Solution:
f(x) = sin x cos x
f(x+h) = sin (x+h) cos (x+h)
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{sin (x+h) cos (x+h)-sin x \hspace{0.1cm}cos x}{h}
Using the trigonometric identity,
sin A cos B = \frac{1}{2} (sin (A+B) + sin(A-B))
f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(sin (x+h+x+h) + sin(x+h-(x+h)))-(sin (x+x) + sin(x-x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(sin (2x+2h) + sin(0))-(sin 2x + sin(0)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(sin (2x+2h))-(sin 2x)}{h}\\
Using the trigonometric identity,
sin A - sin B = 2 cos (\frac{A+B}{2}) sin (\frac{A-B}{2})
f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(2 cos (\frac{2x+2h+2x}{2})sin (\frac{2x+2h-2x}{2})}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{2}(2 cos (2x+h)sin (h)}{h}\\ f'(x) = \lim_{h \to 0} \frac{1}{2}(2 cos (2x+h)) \lim_{h \to 0} \frac{sin (h)}{h}\\ f'(x) = cos (2x+0) (1)\\ f'(x) = cos 2x
(ii) sec x
Solution:
f(x) = sec x = \frac{1}{cos x}
f(x+h) = \frac{1}{cos (x+h)}
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{cos (x+h)}-\frac{1}{cos x}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{cos x-cos (x+h)}{cos (x+h)cos x}}{h}\\ f'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{\frac{cos x-cos (x+h)}{cos (x+h)}}{h}
Using the trigonometric identity,
cos a - cos b = -2 sin (\frac{a+b}{2}) sin (\frac{a-b}{2})
f'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{\frac{-2 sin (\frac{x+x+h}{2}) sin (\frac{x-(x+h)}{2})}{cos (x+h)}}{h}\\ f'(x) = \frac{1}{cos x}\lim_{h \to 0} \frac{-2 sin (\frac{2x+h}{2}) sin (\frac{-h}{2})}{hcos (x+h)}\\ f'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2})}{hcos (x+h)}\\ f'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2})}{cos (x+h)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{h}
Multiply and divide by 2, we have
f'(x) = \frac{2}{cos x}\lim_{h \to 0} \frac{sin (\frac{2x+h}{2})}{cos (x+h)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{h} \times \frac{2}{2}\\ f'(x) = \frac{2}{cos x} \frac{sin (\frac{2x+0}{2})}{cos (x+0)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}} \times \frac{1}{2}\\ f'(x) = \frac{1}{cos x}(\frac{sin (x)}{cos (x)}) \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}}\\ f'(x) = \frac{tan x}{cos x}(1) \\ f'(x) = tan x \hspace{0.1cm}sec x
(iii) 5 sec x + 4 cos x
Solution:
f(x) = 5 sec x + 4 cos x
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(5 sec x + 4 cos x)\\ f'(x) = \frac{d}{dx}(5 sec x) + \frac{d}{dx}(4 cos x)\\ f'(x) = 5\frac{d}{dx}(sec x) + 4 \frac{d}{dx}(cos x)
f'(x) = 5 (tan x sec x) + 4 (-sin x)
f'(x) = 5 tan x sec x - 4 sin x
(iv) cosec x
Solution:
f(x) = cosec x = \frac{1}{sin x}
f(x+h) = \frac{1}{sin (x+h)}
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{1}{sin (x+h)}-\frac{1}{sin x}}{h}\\ f'(x) = \lim_{h \to 0} \frac{\frac{sin x-sin (x+h)}{sin (x+h)sin x}}{h}
Using the trigonometric identity,
sin a - sin b = 2 cos (\frac{a+b}{2}) sin (\frac{a-b}{2})
f'(x) = \frac{1}{sin x}\lim_{h \to 0} \frac{\frac{2 cos (\frac{x+x+h}{2}) sin (\frac{x-(x+h)}{2})}{sin (x+h)}}{h}\\ f'(x) = \frac{1}{sin x}\lim_{h \to 0} \frac{2 cos (\frac{2x+h}{2}) sin (\frac{-h}{2})}{hsin (x+h)}\\ f'(x) = \frac{2}{sin x}\lim_{h \to 0} \frac{cos (\frac{2x+h}{2}) (-sin (\frac{h}{2})}{hsin (x+h)}\\ f'(x) = \frac{-2}{sin x}\lim_{h \to 0} \frac{cos (\frac{2x+h}{2})}{sin (x+h)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{h}
Multiply and divide by 2, we have
f'(x) = \frac{-2}{sin x}\lim_{h \to 0} \frac{cos (\frac{2x+h}{2})}{sin (x+h)}\lim_{h \to 0} \frac{sin (\frac{h}{2})}{h}\times \frac{2}{2}\\ f'(x) = \frac{-2}{sin x} \frac{cos (\frac{2x+0}{2})}{sin (x+0)} \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}} \times \frac{1}{2}\\ f'(x) = \frac{-1}{sin x}(\frac{cos (x)}{sin (x)}) \lim_{h \to 0} \frac{sin (\frac{h}{2})}{\frac{h}{2}}\\ f'(x) = \frac{-cot x}{sin x}(1)\\ f'(x) = -cot x\hspace{0.1cm} cosec x
(v) 3 cot x + 5 cosec x
Solution:
f(x) = 3 cot x + 5 cosec x
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(3 cot x + 5 cosec x)
f'(x) = \frac{d}{dx}(3 cot\hspace{0.1cm} x) + \frac{d}{dx}(5 cosec\hspace{0.1cm} x)
f'(x) = 3 g'(x) + 5 \frac{d}{dx}(cosec \hspace{0.1cm}x)
Here,
g(x) = cot x = \frac{cos x}{sin x}
g(x+h) = \frac{cos (x+h)}{sin (x+h)}
From the first principle,
g'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{cos (x+h)}{sin (x+h)}-\frac{cos x}{sin x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{sin x cos(x+h)-cos x sin (x+h)}{sin (x+h)sin x}}{h}
Using the trigonometric identity,
sin a cos b - cos a sin b = sin (a-b)
g'(x) = \lim_{h \to 0} \frac{\frac{sin (x -(x+h))}{sin (x+h)sin x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{sin (-h)}{h sin (x+h)sin x}\\ g'(x) = \lim_{h \to 0} \frac{-sin h}{h sin (x+h)sin x}\\ g'(x) = \frac{-1}{sin x} (\lim_{h \to 0} \frac{1}{sin(x+h)}) (\lim_{h \to 0} \frac{sin h}{h})\\ g'(x) = \frac{-1}{sin x} \frac{1}{sin(x+0)} (1)\\ g'(x) = \frac{-1}{sin^2 x}\\ g'(x) = - cosec^2x
So, now
f'(x) = 3 g'(x) + 5 \frac{d}{dx}(cosec\hspace{0.1cm} x)
f'(x) = 3 (- cosec2 x) + 5 (-cot x cosec x)
f'(x) = - 3cosec2 x - 5 cot x cosec x
(vi) 5 sin x - 6 cos x + 7
Solution:
f(x) = 5 sin x - 6 cos x + 7
f(x+h) = 5 sin (x+h) - 6 cos (x+h) + 7
From the first principle,
f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 sin (x+h) - 6 cos (x+h) + 7-(5 sin x - 6 cos x + 7)}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 sin (x+h) - 6 cos (x+h) + 7 - 5 sin x + 6 cos x - 7}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 (sin (x+h) - sin x) - 6 (cos (x+h) - cos x) + 7 - 7}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 (sin (x+h) - sin x) - 6 (cos (x+h) - cos x)}{h}
Using the trigonometric identity,
sin a - sin b = 2 cos (\frac{a+b}{2}) sin (\frac{a-b}{2})
cos a - cos b = -2 sin (\frac{a+b}{2}) sin (\frac{a-b}{2})
f'(x) = \lim_{h \to 0} \frac{5 (2 cos (\frac{x+h+x}{2}) sin (\frac{x+h-x}{2})) - 6 (-2 sin (\frac{x+h+x}{2}) sin (\frac{x+h-x}{2}))}{h}\\ f'(x) = \lim_{h \to 0} \frac{5 (2 cos (\frac{2x+h}{2}) sin (\frac{h}{2})) - 6 (-2 sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{h}\\ f'(x) = \lim_{h \to 0} (\frac{10 cos (\frac{2x+h}{2}) sin (\frac{h}{2}) + 12 sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{h})\\ f'(x) = 10 \lim_{h \to 0} \frac{cos (\frac{2x+h}{2}) sin (\frac{h}{2})}{h} + 12 \lim_{h \to 0} (\frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{h})
Multiply and divide by 2, we get
f'(x) = \frac{2}{2}[10 \lim_{h \to 0} \frac{cos (\frac{2x+h}{2}) sin (\frac{h}{2})}{h} + 12 \lim_{h \to 0} (\frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{h})]\\ f'(x) = \frac{1}{2}[10 \lim_{h \to 0} \frac{cos (\frac{2x+h}{2}) sin (\frac{h}{2})}{\frac{h}{2}} + 12 \lim_{h \to 0} (\frac{sin (\frac{2x+h}{2}) sin (\frac{h}{2}))}{\frac{h}{2}})]\\ f'(x) = 5 cos (\frac{2x+0}{2}) \lim_{h \to 0}\frac{ sin (\frac{h}{2})}{\frac{h}{2}} + 6 (sin (\frac{2x+0}{2}) \lim_{h \to 0} \frac{sin (\frac{h}{2}))}{\frac{h}{2}})
f'(x) = 5 cos x (1) + 6 sin x (1)
f'(x) = 5 cos x + 6 sin x
(vii) 2 tan x - 7 sec x
Solution:
f(x) = 2 tan x - 7 sec x
Taking derivative both sides,
\frac{d}{dx}(f(x)) = \frac{d}{dx}(2\hspace{0.1cm} tan \hspace{0.1cm}x - 7\hspace{0.1cm} sec\hspace{0.1cm} x )
f'(x) = \frac{d}{dx}(2 \hspace{0.1cm}tan \hspace{0.1cm}x) - \frac{d}{dx}(7\hspace{0.1cm} sec\hspace{0.1cm} x)
f'(x) = 2 g'(x) - 7 \frac{d}{dx}(sec\hspace{0.1cm} x)
Here,
g(x) = tan x = \frac{sin \hspace{0.1cm}x}{cos \hspace{0.1cm}x}
g(x+h) = \frac{sin (x+h)}{cos (x+h)}
From the first principle,
g'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h)}{cos (x+h)}-\frac{sin\hspace{0.1cm} x}{cos\hspace{0.1cm} x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{\frac{cos \hspace{0.1cm}x \hspace{0.1cm}sin (x+h)-sin\hspace{0.1cm} x \hspace{0.1cm}cos(x+h)}{cos (x+h)cos \hspace{0.1cm}x}}{h}
Using the trigonometric identity,
sin a cos b - cos a sin b = sin (a-b)
g'(x) = \lim_{h \to 0} \frac{\frac{sin (x+h -x)}{cos (x+h)cos x}}{h}\\ g'(x) = \lim_{h \to 0} \frac{sin (h)}{h \hspace{0.1cm}cos (x+h)\hspace{0.1cm}cos\hspace{0.1cm} x}\\ g'(x) = \frac{1}{cos\hspace{0.1cm} x} (\lim_{h \to 0} \frac{1}{cos(x+h)}) (\lim_{h \to 0} \frac{sin h}{h})\\ g'(x) = \frac{1}{cos \hspace{0.1cm}x} \frac{1}{cos(x+0)} (1)\\ g'(x) = \frac{1}{cos^2 x}
g'(x) = sec2x
So, now
f'(x) = 2 g'(x) - 7 \frac{d}{dx}(sec \hspace{0.1cm} x)
f'(x) = 2 (sec2x) - 7 (sec x tan x)
f'(x) = 2sec2x - 7 sec x tan x
Similar Reads
Class 11 NCERT Solutions - Chapter 13 Limits And Derivatives - Exercise 13.2
Question 1. Find the derivative of x2 â 2 at x = 10. Solution: f(x) = x2 â 2 f(x+h) = (x+h)2 â 2 From the first principle, [Tex]f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}[/Tex] When, x = 10 [Tex]f'(10) = \lim_{h \to 0} (\frac{f(10+h)-f(10)}{h})\\ f'(10) = \lim_{h \to 0} (\frac{((10+h)^2-2) - (10^2
15 min read
NCERT Solutions Class 11 - Chapter 12 Limits And Derivatives - Exercise 12.1
Evaluate the following limits in Exercises 1 to 22.Question 1: [Tex]\lim_{x \to 3} x+3[/Tex]Solution: In [Tex]\lim_{x \to 3} x+3[/Tex], as xâ¢3 Put x = 3, we get [Tex]\lim_{x \to 3} x+3[/Tex] = 3+3 = 6 Question 2: [Tex]\lim_{x \to \pi} (x-\frac{22}{7})[/Tex]Solution: In [Tex]\lim_{x \to \pi} (x-\frac
13 min read
Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives - Exercise 13.1 | Set 2
Question 17:[Tex]\lim_{x \to 0} \frac{cos \hspace{0.1cm}2x-1}{cos \hspace{0.1cm}x-1}[/Tex] Solution: In[Tex]\lim_{x \to 0} \frac{cos \hspace{0.1cm}2x-1}{cos \hspace{0.1cm}x-1} [/Tex], as xâ¢0 As we know, cos 2θ = 1-2sin2θ Substituting the values, we get [Tex]\lim_{x \to 0} \frac{1-2sin^2x-1}{1-2sin^2
9 min read
Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives - Exercise 13.1 | Set 1
Evaluate the following limits in Exercises 1 to 22.Question 1: [Tex]\lim_{x \to 3} x+3[/Tex] Solution: In [Tex]\lim_{x \to 3} x+3[/Tex], as xâ¢3 Put x = 3, we get [Tex]\lim_{x \to 3} x+3[/Tex] = 3+3 = 6 Question 2: [Tex]\lim_{x \to \pi} (x-\frac{22}{7})[/Tex] Solution: In [Tex]\lim_{x \to \pi} (x-\fr
5 min read
NCERT Solutions Class 11 - Chapter 12 Limits And Derivatives - Miscellaneous Exercise
Question 1: Find the derivative of the following functions from first principle:(i) -xSolution: f(x) = -x f(x+h) = -(x+h) From the first principle, [Tex]f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ f'(x) = \lim_{h \to 0} (\frac{-(x+h)-(-x)}{h})\\ f'(x) = \lim_{h \to 0} (\frac{-x-h+x}{h})\\ f'(x) =
15+ min read
Class 11 NCERT Solutions- Chapter 13 Limits And Derivatives - Miscellaneous Exercise on Chapter 13 | Set 2
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): Question 16: [Tex]\frac{cos x}{1+sin x}[/Tex] Solution: [Tex]f(x) = \frac{cos x}{1+sin x}[/Tex] Taking derivative both sides, [Tex]\frac{d}{dx
15 min read
Class 11 RD Sharma Solutions - Chapter 30 Derivatives - Exercise 30.2 | Set 2
Derivatives are a fundamental concept in calculus that measures how a function changes as its input changes. They represent the rate of change or slope of the function at any given point. Understanding derivatives is crucial for solving problems related to motion, optimization, and modeling real-wor
7 min read
Class 11 RD Sharma Solutions - Chapter 31 Derivatives - Exercise 31.4
Question 1. Write the negation of each of the following statements:(i) For every x â N, x + 3 > 10(ii) There exists x â N, x + 3 = 10Solution: (i) The negation of the statement is âThere exist x â N, such that x + 3 <= 10.â (ii) The negation of the statement is âThere exist x â N, such that x
2 min read
Class 11 RD Sharma Solutions - Chapter 31 Derivatives - Exercise 31.2
Question 1. Write the negation of the following statement: (i) Bangalore is the capital of Karnataka. (ii) It rained on July 4, 2005. (iii) Ravish is honest. (iv) The earth is round. (v) The sun is cold. Solution: (i) Bangalore is not the capital of Karnataka or It is false that âBangalore is the ca
3 min read
Class 11 RD Sharma Solutions- Chapter 30 Derivatives - Exercise 30.1
Question 1. Find the derivative of f(x) = 3x at x = 2 Solution: Given: f(x)=3x By using the derivative formula, [Tex]f'(a)= \lim_{h \to 0} \frac {f(a+h)-f(a)} h [/Tex] {where h is a small positive number} Derivative of f(x)=3x at x=2 is given as: [Tex]f'(2)= \lim_{h \to 0} \frac {f(2+h)-f(2)} h[/Tex
7 min read