Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on Stack
  • Practice Stack
  • MCQs on Stack
  • Stack Tutorial
  • Stack Operations
  • Stack Implementations
  • Monotonic Stack
  • Infix to Postfix
  • Prefix to Postfix
  • Prefix to Infix
  • Advantages & Disadvantages
Open In App
Next Article:
Find the number of valid parentheses expressions of given length
Next article icon

Minimum bracket reversals to make an expression balanced

Last Updated : 26 Mar, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given an expression with only '}' and '{'. The expression may not be balanced. Find minimum number of bracket reversals to make the expression balanced.

Examples: 

Input: s = "}{{}}{{{"
Output: 3
Explanation: We need to reverse minimum 3 brackets to make "{{{}}{}}".

Input: s = "{{"
Output: 1
Explanation: We need 1 reversal

Input: s = "{{}{{{}{{}}{{"
Output: -1
Explanation: There's no way we can balance this sequence of braces as the length is odd.

[Naive Approach] Recursive Bracket Reversal - O(2^n * n) time and (n) space

This approach recursively checks all possible ways to reverse brackets to make the expression balanced. The algorithm explores two options for each bracket: keeping it as it is or reversing it. The goal is to find the minimum number of reversals needed to balance the string.

Steps:

  1. Check if the string length is even: If it's odd, return -1 because a balanced string requires an even number of brackets.
  2. Recursive function: For each bracket, either keep it as is or reverse it, then check if the resulting string is balanced.
  3. Balance check: Traverse the string and maintain a count variable to track the balance of { and }. If at any point the count becomes negative, the string is unbalanced.
  4. Return the minimum number of reversals: If a balanced string is found, compare the number of reversals and store the minimum.
C++
#include <bits/stdc++.h> using namespace std;  //Function to check that expression is balanced or not bool isBalanced(string expr) {     // Initialising Variables     bool flag = true;     int count = 0;       // Traversing the Expression     for (int i = 0; i < expr.length(); i++) {           if (expr[i] == '{') {             count++;         }         else {             // It is a closing bracket             count--;         }         if (count < 0) {                          // This means there are more              // Closing brackets than opening ones             flag = false;             break;         }     }       // If count is not zero, It means      // there are more opening brackets     if (count != 0) {         flag = false;     }       return flag; }  void recur(string expr,int n,int ind,int change,int &ans){          // When generated expression is balanced     if(isBalanced(expr)){ans=min(ans,change);}          // When we covered whole string     if(ind==n){return;}          // Keep bracket as it is     recur(expr,n,ind+1,change,ans);          // Reverse the bracket     if(expr[ind]=='{'){expr[ind]='}';}     else{expr[ind]='{';}     recur(expr,n,ind+1,change+1,ans); }   int countMinReversals(string expr) {     // Length of expression     int n = expr.length();          // To store answer     int ans=INT_MAX;          // When total number of brackets are odd     if(n%2==1){         return -1;     }else{         recur(expr,n,0,0,ans);         return ans;     } }  int main() {     string expr = "}{{}}{{{";     cout << countMinReversals(expr);     return 0; } 
Java
import java.util.*;  public class GfG {      public static boolean isBalanced(String expr) {         int count = 0;          // Traversing the expression         for (int i = 0; i < expr.length(); i++) {             if (expr.charAt(i) == '{') {                 count++;             } else {                 // It is a closing bracket                 count--;             }             if (count < 0) {                 // This means there are more closing brackets than opening ones                 return false;             }         }          // If count is not zero, it means there are more opening brackets         return count == 0;     }      // Recursive function to find the number of reversals     public static void recur(String expr, int n, int ind, int change, int[] ans) {         // When generated expression is balanced         if (isBalanced(expr)) {             ans[0] = Math.min(ans[0], change);         }          // When we have covered the whole string         if (ind == n) {             return;         }          // Keep bracket as it is         recur(expr, n, ind + 1, change, ans);          // Reverse the bracket         char[] exprArray = expr.toCharArray();         if (exprArray[ind] == '{') {             exprArray[ind] = '}';         } else {             exprArray[ind] = '{';         }         recur(new String(exprArray), n, ind + 1, change + 1, ans);     }      public static int countMinReversals(String expr) {         // Length of expression         int n = expr.length();          // To store answer         int[] ans = { Integer.MAX_VALUE };          // When the total number of brackets is odd         if (n % 2 == 1) {             return -1;         } else {             // Function call for finding answer             recur(expr, n, 0, 0, ans);             return ans[0];         }     }      public static void main(String[] args) {         String expr = "}{{}}{{{";         System.out.println(countMinReversals(expr));       } } 
Python
def is_balanced(expr):     # Initialising Variables     flag = True     count = 0      # Traversing the Expression     for char in expr:         if char == '{':             count += 1         else:             # It is a closing bracket             count -= 1         if count < 0:             # This means there are more Closing brackets than opening ones             flag = False             break      # If count is not zero, It means there are more opening brackets     if count != 0:         flag = False      return flag   def recur(expr, n, ind, change, ans):     # When generated expression is balanced     if is_balanced(expr):         ans[0] = min(ans[0], change)      # When we covered whole string     if ind == n:         return      # Keep bracket as it is     recur(expr, n, ind + 1, change, ans)      # Reverse the bracket     if expr[ind] == '{':         expr[ind] = '}'     else:         expr[ind] = '{'     recur(expr, n, ind + 1, change + 1, ans)    def countMinReversals(expr):     # Length of expression     n = len(expr)      # To store answer     ans = [float('inf')]      # When total number of brackets are odd     if n % 2 == 1:         return -1     else:         # Function call for finding answer         recur(list(expr), n, 0, 0, ans)         return ans[0]   if __name__ == '__main__':     expr = '}{{}}{{{'     print(countMinReversals(expr)) 
C#
using System;  class GfG {     // Function to check if the expression is balanced or not     public static bool IsBalanced(string expr)     {         int count = 0;          // Traversing the expression         for (int i = 0; i < expr.Length; i++)         {             if (expr[i] == '{')             {                 count++;             }             else             {                 // It is a closing bracket                 count--;             }             if (count < 0)             {                 // This means there are more closing brackets than opening ones                 return false;             }         }          // If count is not zero, it means there are more opening brackets         return count == 0;     }      // Recursive function to find the number of reversals     public static void recur(string expr, int n, int ind, int change, ref int ans)     {         // When generated expression is balanced         if (IsBalanced(expr))         {             ans = Math.Min(ans, change);         }          // When we have covered the whole string         if (ind == n)         {             return;         }          // Keep bracket as it is         recur(expr, n, ind + 1, change, ref ans);          // Reverse the bracket         char[] exprArray = expr.ToCharArray();         if (exprArray[ind] == '{')         {             exprArray[ind] = '}';         }         else         {             exprArray[ind] = '{';         }         recur(new string(exprArray), n, ind + 1, change + 1, ref ans);     }      public static int countMinReversals(string expr)     {         int n = expr.Length;          // To store answer         int ans = int.MaxValue;          // When the total number of brackets is odd         if (n % 2 == 1)         {             return -1;         }         else         {             // Function call for finding answer             recur(expr, n, 0, 0, ref ans);             return ans;         }     }      // Entry point of the program     public static void Main(string[] args)     {         string expr = "}{{}}{{{";         Console.WriteLine(countMinReversals(expr));       } } 
JavaScript
// Function to check if the expression is balanced or not function isBalanced(expr) {     let count = 0;      // Traversing the expression     for (let i = 0; i < expr.length; i++) {         if (expr[i] === '{') {             count++;         } else {             // It is a closing bracket             count--;         }         if (count < 0) {             // This means there are more closing brackets than opening ones             return false;         }     }      // If count is not zero, it means there are more opening brackets     return count === 0; }  // Recursive function to find the number of reversals function recur(expr, n, ind, change, ans) {     // When generated expression is balanced     if (isBalanced(expr)) {         ans[0] = Math.min(ans[0], change);     }      // When we have covered the whole string     if (ind === n) {         return;     }      // Keep bracket as it is     recur(expr, n, ind + 1, change, ans);      // Reverse the bracket     let exprArray = expr.split('');     if (exprArray[ind] === '{') {         exprArray[ind] = '}';     } else {         exprArray[ind] = '{';     }     recur(exprArray.join(''), n, ind + 1, change + 1, ans); }  // Returns the count of minimum reversals for making expr balanced. Returns -1 if expr cannot be balanced. function countMinReversals(expr) {     // Length of expression     const n = expr.length;      // To store answer     let ans = [Infinity];      // When the total number of brackets is odd     if (n % 2 === 1) {         return -1;     } else {         // Function call for finding answer         recur(expr, n, 0, 0, ans);         return ans[0] === Infinity ? -1 : ans[0];     } }  // Test the function const expr = "}{{}}{{{"; console.log(countMinReversals(expr));   

Output
3

Time complexity: O(2n*n), because O(2n) in recursive function and O(n) in checking the expression generated after every recursive call is balanced or not.
Auxiliary space O(n), because of the Auxillary space of recursion

[Better Approach] Stack Based Bracket Reversal - O(n) time and O(n) space

The solution involves first removing all balanced parts of the expression. For example, converting "}{{}}{{{" to "}}{{{" by eliminating the balanced part. After this removal, the remaining expression will always have the form }}...}{{...{, consisting of some closing brackets followed by some opening brackets.

To balance this remaining expression, we need to calculate the minimum number of reversals required. Let m be the number of closing brackets and n be the number of opening brackets. The minimum reversals required is given by ceil(m / 2) + ceil(n / 2).

C++
#include <bits/stdc++.h> using namespace std;  int countMinReversals(string expr) {     int len = expr.length();      // length of expression must be even to make, it balanced by using reversals.     if (len % 2)         return -1;      stack<char> s;     for (int i = 0; i < len; i++)     {         if (expr[i] == '}' && !s.empty())         {             if (s.top() == '{')                 s.pop();             else                 s.push(expr[i]);         }         else             s.push(expr[i]);     }      // Length of the reduced expression red_len = (m+n)     int red_len = s.size();      // count opening brackets at the end of stack     int n = 0;     while (!s.empty() && s.top() == '{')     {         s.pop();         n++;     }      // return ceil(m/2) + ceil(n/2) which i actually equal to (m+n)/2 + n%2 when m+n is even.     return (red_len / 2 + n % 2); }  int main() {     string s = "}{{}}{{{";     cout << countMinReversals(s);     return 0; } 
Java
import java.util.Stack;  public class GfG {     public static int countMinReversals(String expr) {         int len = expr.length();          // length of expression must be even to make, it balanced by using reversals.         if (len % 2 != 0) return -1;          Stack<Character> s = new Stack<>();         for (int i = 0; i < len; i++) {             if (expr.charAt(i) == '}' && !s.isEmpty()) {                 if (s.peek() == '{')                     s.pop();                 else                     s.push(expr.charAt(i));             } else {                 s.push(expr.charAt(i));             }         }          // Length of the reduced expression red_len = (m+n)         int red_len = s.size();          // count opening brackets at the end of stack         int n = 0;         while (!s.isEmpty() && s.peek() == '{') {             s.pop();             n++;         }          // return ceil(m/2) + ceil(n/2) which i actually equal to (m+n)/2 + n%2 when m+n is even.         return (red_len / 2 + n % 2);     }      public static void main(String[] args) {         String s = "}{{}}{{{";         System.out.println(countMinReversals(s));     } } 
Python
def countMinReversals(expr):     length = len(expr)      # length of expression must be even to make, it balanced by using reversals.     if length % 2:         return -1      stack = []     for char in expr:         if char == '}' and stack:             if stack[-1] == '{':                 stack.pop()             else:                 stack.append(char)         else:             stack.append(char)      # Length of the reduced expression red_len = (m+n)     red_len = len(stack)      # count opening brackets at the end of stack     n = 0     while stack and stack[-1] == '{':         stack.pop()         n += 1      # return ceil(m/2) + ceil(n/2) which is actually equal to (m+n)/2 + n%2 when m+n is even.     return (red_len // 2 + n % 2)  if __name__ == '__main__':     s = '}{{}}{{{'     print(countMinReversals(s)) 
C#
using System; using System.Collections.Generic;  class GfG {     public static int CountMinReversals(string expr) {         int len = expr.Length;          // length of expression must be even to make, it balanced by using reversals.         if (len % 2 != 0) return -1;          Stack<char> s = new Stack<char>();         for (int i = 0; i < len; i++) {             if (expr[i] == '}' && s.Count > 0) {                 if (s.Peek() == '{')                     s.Pop();                 else                     s.Push(expr[i]);             } else {                 s.Push(expr[i]);             }         }          // Length of the reduced expression red_len = (m+n)         int red_len = s.Count;          // count opening brackets at the end of stack         int n = 0;         while (s.Count > 0 && s.Peek() == '{') {             s.Pop();             n++;         }          // return ceil(m/2) + ceil(n/2) which is actually equal to (m+n)/2 + n%2 when m+n is even.         return (red_len / 2 + n % 2);     }      static void Main() {         string s = "}{{}}{{{";         Console.WriteLine(CountMinReversals(s));     } } 
JavaScript
// Function to count minimum reversals to make the expression balanced function countMinReversals(expr) {     let len = expr.length;      // length of expression must be even to make, it balanced by using reversals.     if (len % 2) return -1;      let stack = [];     for (let i = 0; i < len; i++) {         if (expr[i] === '}' && stack.length > 0) {             if (stack[stack.length - 1] === '{') {                 stack.pop();             } else {                 stack.push(expr[i]);             }         } else {             stack.push(expr[i]);         }     }      // Length of the reduced expression red_len = (m+n)     let red_len = stack.length;      // count opening brackets at the end of stack     let n = 0;     while (stack.length > 0 && stack[stack.length - 1] === '{') {         stack.pop();         n++;     }      // return ceil(m/2) + ceil(n/2) which is actually equal to (m+n)/2 + n%2 when m+n is even.     return Math.floor(red_len / 2) + (n % 2); }  let s = '}{{}}{{{'; console.log(countMinReversals(s)); 

Output
3

[Expected Approach] Two-Pointer Bracket Reversal - O(n) time and O(1) space

Since the expression only contains one type of bracket, we maintain two variables to keep track of the counts of left ({) and right (}) brackets as we process the string. If the expression has balanced brackets, we decrement the left variable. Otherwise, we increment the right variable. Finally, the minimum number of reversals required is calculated as ceil(left / 2) + ceil(right / 2).

C++
#include <bits/stdc++.h> using namespace std;  // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. int countMinReversals(string expr) {     int len = expr.length();      // Expressions of odd lengths cannot be balanced     if (len % 2 != 0) {         return -1;     }     int left_brace = 0, right_brace = 0;     int ans;     for (int i = 0; i < len; i++) {          // If we find a left bracket then we         // simply increment the left bracket         if (expr[i] == '{') {             left_brace++;         }          // Else if left bracket is 0 then we find         // unbalanced right bracket and increment         // right bracket or if the expression         // is balanced then we decrement left         else {             if (left_brace == 0) {                 right_brace++;             }             else {                 left_brace--;             }         }     }     ans = ceil(left_brace / 2.0) + ceil(right_brace / 2.0);     return ans; }  int main() {     string  s= "}{{}}{{{";     cout << countMinReversals(s);     return 0; } 
Java
// Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. class Solution {     public int countMinReversals(String expr) {         int len = expr.length();          // Expressions of odd lengths cannot be balanced         if (len % 2 != 0) {             return -1;         }         int left_brace = 0, right_brace = 0;         int ans;         for (int i = 0; i < len; i++) {              // If we find a left bracket then we             // simply increment the left bracket             if (expr.charAt(i) == '{') {                 left_brace++;             }              // Else if left bracket is 0 then we find             // unbalanced right bracket and increment             // right bracket or if the expression             // is balanced then we decrement left             else {                 if (left_brace == 0) {                     right_brace++;                 }                 else {                     left_brace--;                 }             }         }         ans = (int)Math.ceil(left_brace / 2.0) + (int)Math.ceil(right_brace / 2.0);         return ans;     }      public static void main(String[] args) {         String s = "}{{}}{{{";         Solution sol = new Solution();         System.out.println(sol.countMinReversals(s));     } } 
Python
# Returns count of minimum reversals for making # expr balanced. Returns -1 if expr cannot be # balanced. def countMinReversals(expr):     length = len(expr)      # Expressions of odd lengths cannot be balanced     if length % 2 != 0:         return -1     left_brace = 0     right_brace = 0      for char in expr:                  # If we find a left bracket then          # we simply increment the left bracket         if char == '{':             left_brace += 1                      # Else if left bracket is 0 then we find         # unbalanced right bracket and increment         # right bracket or if the expression         # is balanced then we decrement left         else:             if left_brace == 0:                 right_brace += 1             else:                 left_brace -= 1      ans = (left_brace + 1) // 2 + (right_brace + 1) // 2     return ans  s = "}{{}}{{{" print(countMinReversals(s)) 
C#
// Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. using System; using System.Linq;  class GfG {     static int CountMinReversals(string expr)     {         int len = expr.Length;          // Expressions of odd lengths cannot be balanced         if (len % 2 != 0)         {             return -1;         }         int leftBrace = 0, rightBrace = 0;         int ans;         for (int i = 0; i < len; i++)         {             // If we find a left bracket then we              // simply increment the left bracket             if (expr[i] == '{')             {                 leftBrace++;             }              // Else if left bracket is 0 then we find             // unbalanced right bracket and increment             // right bracket or if the expression             // is balanced then we decrement left             else             {                 if (leftBrace == 0)                 {                     rightBrace++;                 }                 else                 {                     leftBrace--;                 }             }         }         ans = (int)Math.Ceiling(leftBrace / 2.0) + (int)Math.Ceiling(rightBrace / 2.0);         return ans;     }      static void Main()     {         string s = "}{{}}{{{";         Console.WriteLine(CountMinReversals(s));     } } 
JavaScript
// Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. function countMinReversals(expr) {     let len = expr.length;      // Expressions of odd lengths cannot be balanced     if (len % 2 !== 0) {         return -1;     }     let leftBrace = 0, rightBrace = 0;     let ans;     for (let i = 0; i < len; i++) {                  // If we find a left bracket then we          // simply increment the left bracket         if (expr[i] === '{') {             leftBrace++;         }          // Else if left bracket is 0 then we find         // unbalanced right bracket and increment         // right bracket or if the expression         // is balanced then we decrement left         else {             if (leftBrace === 0) {                 rightBrace++;             } else {                 leftBrace--;             }         }     }     ans = Math.ceil(leftBrace / 2) + Math.ceil(rightBrace / 2);     return ans; }  let s = "}{{}}{{{"; console.log(countMinReversals(s)); 

Output
3



Next Article
Find the number of valid parentheses expressions of given length

K

kartik
Improve
Article Tags :
  • Strings
  • Stack
  • Queue
  • DSA
  • Amazon
Practice Tags :
  • Amazon
  • Queue
  • Stack
  • Strings

Similar Reads

    Mastering Bracket Problems for Competitive Programming
    Bracket problems in programming typically refer to problems that involve working with parentheses, and/or braces in expressions or sequences. It typically refers to problems related to the correct and balanced usage of parentheses, and braces in expressions or code. These problems often involve chec
    4 min read
    Check for balanced with only one type of brackets
    Given a string str of length N, consisting of '(' and ')' only, the task is to check whether it is balanced or not.Examples:Input: str = "((()))()()" Output: BalancedInput: str = "())((())" Output: Not Balanced Approach 1: Declare a Flag variable which denotes expression is balanced or not.Initialis
    9 min read
    Valid Parentheses in an Expression
    Given a string s representing an expression containing various types of brackets: {}, (), and [], the task is to determine whether the brackets in the expression are balanced or not. A balanced expression is one where every opening bracket has a corresponding closing bracket in the correct order.Exa
    8 min read
    Length of longest balanced parentheses prefix
    Given a string of open bracket '(' and closed bracket ')'. The task is to find the length of longest balanced prefix. Examples: Input : S = "((()())())((" Output : 10From index 0 to index 9, they are forming a balanced parentheses prefix.Input : S = "()(())((()"Output : 6The idea is take value of op
    9 min read
    Modify a numeric string to a balanced parentheses by replacements
    Given a numeric string S made up of characters '1', '2' and '3' only, the task is to replace characters with either an open bracket ( '(' ) or a closed bracket ( ')' ) such that the newly formed string becomes a balanced bracket sequence. Note: All occurrences of a character must be replaced by the
    10 min read
    Check if the bracket sequence can be balanced with at most one change in the position of a bracket
    Given an unbalanced bracket sequence as a string str, the task is to find whether the given string can be balanced by moving at most one bracket from its original place in the sequence to any other position.Examples: Input: str = ")(()" Output: Yes As by moving s[0] to the end will make it valid. "(
    6 min read
    Number of closing brackets needed to complete a regular bracket sequence
    Given an incomplete bracket sequence S. The task is to find the number of closing brackets ')' needed to make it a regular bracket sequence and print the complete bracket sequence. You are allowed to add the brackets only at the end of the given bracket sequence. If it is not possible to complete th
    7 min read
    Minimum number of Parentheses to be added to make it valid
    Given a string S of parentheses '(' or ')' where, 0\leq len(S)\leq 1000 . The task is to find a minimum number of parentheses '(' or ')' (at any positions) we must add to make the resulting parentheses string is valid. Examples: Input: str = "())" Output: 1 One '(' is required at beginning. Input: s
    9 min read
    Minimum bracket reversals to make an expression balanced
    Given an expression with only '}' and '{'. The expression may not be balanced. Find minimum number of bracket reversals to make the expression balanced.Examples: Input: s = "}{{}}{{{"Output: 3Explanation: We need to reverse minimum 3 brackets to make "{{{}}{}}". Input: s = "{{"Output: 1Explanation:
    15+ min read
    Find the number of valid parentheses expressions of given length
    Given a number n, the task is to find the number of valid parentheses expressions of that length. Examples : Input: 2Output: 1 Explanation: There is only possible valid expression of length 2, "()"Input: 4Output: 2 Explanation: Possible valid expression of length 4 are "(())" and "()()" Input: 6Outp
    11 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences