Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Minimize count of Subsets with difference between maximum and minimum element not exceeding K
Next article icon

Minimize sum of differences between maximum and minimum elements present in K subsets

Last Updated : 21 Feb, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] of size N and an integer K, the task is to minimize the sum of the difference between the maximum and minimum element of each subset by splitting the array into K subsets such that each subset consists of unique array elements only.

Examples:

Input: arr[] = { 6, 3, 8, 1, 3, 1, 2, 2 }, K = 4 Output: 6 Explanation: One of the optimal ways to split the array into K(= 4) subsets are { { 1, 2 }, { 2, 3 }, { 6, 8 }, { 1, 4 } }. Sum of difference of maximum and minimum element present in each subset = { (2 - 1) + (3 - 2) + (8 - 6) + (3 - 1) } = 6. Therefore, the required output is 6

Input: arr[] = { 2, 2, 1, 1 }, K = 1 Output: -1

Approach: The problem can be solved using Dynamic Programming with bitmasking. Following are the recurrence relations:

mask: ith bit of mask checks if array element is already selected in a subset or not. l: index of last element selected in a subset. j: index of current element selected in a subset.

If count of set bits in mask mod (N / K) == 1: dp[mask][l] = min(dp[mask][l], dp[mask ^ (1 << l)][j])

Otherwise, dp[mask][j] = min(dp[mask][j], dp[mask ^ (1 << j)][l] + nums[l] - nums[j])

Follow the steps below to solve the problem:

  • Iterate over all possible values of mask, i.e. [0, 2N - 1]
  • Initialize an array, say n_z_bits[], to store the count of elements already selected in subsets.
  • Use the above recurrence relation and fill all possible dp states of the recurrence relation.
  • Finally, print the minimum elements from dp[(1 << N ) - 1].

Below is the implementation of the above approach:

C++
#include <bits/stdc++.h> using namespace std;  // Function to minimize the sum of // difference between maximums and // minimums of K subsets of an array int MinimizeSum(vector<int>& nums, int k) {      // Stores count of elements     // in an array     int n = nums.size();      // Base Case     if (k == n)         return 0;      // Initialize DP[][] array     int inf = 1e9;     vector<vector<int> > dp(1 << n, vector<int>(n, inf));      // Sort the array     sort(nums.begin(), nums.end());      // Mark i-th element as not selected     for (int i = 0; i < n; i++) {         dp[1 << i][i] = 0;     }      // Iterate over all possible     // values of mask     for (int mask = 0; mask < (1 << n); mask++) {          // Store count of set bits         // in mask         vector<int> n_z_bits;          // Store index of element which is         // already selected in a subset         for (int i = 0; i < n; i++) {             if ((mask >> i) & 1) {                 n_z_bits.push_back(i);             }         }          // If count of set bits in mask mod (n // k) equal         // to 1         if (n_z_bits.size() % (n / k) == 1) {             for (int i = 0; i < n_z_bits.size(); i++) {                 for (int j = i + 1; j < n_z_bits.size();                      j++) {                     int temp = dp[mask ^ (1 << n_z_bits[j])]                                  [n_z_bits[i]];                     dp[mask][n_z_bits[j]]                         = min(dp[mask][n_z_bits[j]], temp);                 }             }         }         else {             for (int i = 0; i < n_z_bits.size(); i++) {                 for (int j = i + 1; j < n_z_bits.size();                      j++) {                     if (nums[n_z_bits[i]]                         != nums[n_z_bits[j]]) {                         // Check if l-th element                         // is already selected or not                         int                              mask_t                             = mask ^ (1 << n_z_bits[j]);                          int temp                             = (dp[mask_t][n_z_bits[i]]                                + nums[n_z_bits[i]]                                - nums[n_z_bits[j]]);                          // Update dp[mask][l]                         dp[mask][n_z_bits[j]] = min(                             dp[mask][n_z_bits[j]], temp);                     }                 }             }         }     }      // Return minimum element     // from dp[(1 << N) - 1]     int minVal = inf;     for (int i = 0; i < n; i++) {         minVal = min(minVal, dp[(1 << n) - 1][i]);     }      // If dp[-1] is inf then the     // partition is not possible     if (minVal == inf) {         return -1;     }     else {         return 999999999- minVal;     } }  // Driver Code int main() {     // Given array     vector<int> arr = { 6, 3, 8, 1, 3, 1, 2, 2 };     int k = 4;      // Function call     cout << MinimizeSum(arr, k) << endl;      return 0; }  // This code is contributed by lokeshpotta20. 
Java
import java.util.*; public class GFG {    // Function to minimize the sum of   // difference between maximums and   // minimums of K subsets of an array   public static int MinimizeSum(List<Integer> nums, int k)    {      // Stores count of elements     // in an array     int n = nums.size();      //Base Case     if (k == n) {       return 0;     }      // Initialize DP[][] array     int inf = 1_000_000_000;     int[][] dp = new int[1 << n][n];     for (int[] row : dp) {       java.util.Arrays.fill(row, inf);     }      // Sort the array     Collections.sort(nums);      // Mark i-th element as not selected     for (int i = 0; i < n; i++) {       dp[1 << i][i] = 0;     }      // Iterate over all possible     // values of mask     for (int mask = 0; mask < (1 << n); mask++)     {        // Store count of set bits       // in mask       List<Integer> n_z_bits = new ArrayList<>();        // Store index of element which is       // already selected in a subset       for (int i = 0; i < n; i++) {         if ((mask >> i & 1) == 1) {           n_z_bits.add(i);          }       }        // If count of set bits in mask mod (n // k) equal       // to 1       if (n_z_bits.size() % (n / k) == 1) {         for (int i = 0; i < n_z_bits.size(); i++) {           for (int j = i + 1; j < n_z_bits.size(); j++) {             int temp = dp[mask ^ (1 << n_z_bits.get(j))][n_z_bits.get(i)];             dp[mask][n_z_bits.get(j)] = Math.min(dp[mask][n_z_bits.get(j)], temp);           }         }       } else {         for (int i = 0; i < n_z_bits.size(); i++) {           for (int j = i + 1; j < n_z_bits.size(); j++) {             if (nums.get(n_z_bits.get(i)) != nums.get(n_z_bits.get(j)))              {                // Check if l-th element               // is already selected or not               int maskT = mask ^ (1 << n_z_bits.get(j));               int temp = (dp[maskT][n_z_bits.get(i)] + nums.get(n_z_bits.get(i)) - nums.get(n_z_bits.get(j)));               // Update dp[mask][l]               dp[mask][n_z_bits.get(j)] = Math.min(dp[mask][n_z_bits.get(j)], temp);             }           }         }       }     }      // Return minimum element     // from dp[(1 << N) - 1]     int minVal = inf;      // If dp[-1] is inf then the     // partition is not possible     for (int i = 0; i < n; i++) {       minVal = Math.min(minVal, dp[(1 << n) - 1][i]);     }      if (minVal == inf) {       return -1;     } else {       return 999999999 - minVal;     }   }    public static void main(String[] args) {     List<Integer> arr = new ArrayList<>();     arr.add(6);arr.add(3);arr.add(8);arr.add(1);     arr.add(3);arr.add(1);arr.add(2);arr.add(2);     int k = 4;     System.out.println(MinimizeSum(arr,k));   } }  // This code is contributed by anskalyan3. 
Python3
# Python program to implement # the above approach from itertools import permutations  from itertools import combinations  # Function to minimize the sum of # difference between maximums and # minimums of K subsets of an array def MinimizeSum(nums, k):      # Stores count of elements     # in an array     n = len(nums)          # Base Case     if k == n:         return 0      # Initialize DP[][] array     dp = [[float("inf")] * n for _ in range(1 << n)]      # Sort the array     nums.sort()      # Mark i-th element     # as not selected     for i in range(n):         dp[1 << i][i] = 0      # Iterate over all possible     # values of mask     for mask in range(1 << n):          # Store count of set bits         # in mask         n_z_bits = []                   # Store index of element which is          # already selected in a subset         for p, c in enumerate(bin(mask)):              if c == "1":                 temp = len(bin(mask)) - p - 1                 n_z_bits.append(temp)          # If count of set bits in mask                 # mod (n // k) equal to 1         if len(n_z_bits) % (n//k) == 1:             for j, l in permutations(n_z_bits, 2):                 temp = dp[mask ^ (1 << l)][j]                 dp[mask][l] = min(dp[mask][l], temp)          else:             for j, l in combinations(n_z_bits, 2):                 if nums[j] != nums[l]:                      # Check if l-th element                      # is already selected or not                     mask_t = mask ^ (1 << l)                      temp = (dp[mask_t][j] +                               nums[j] - nums[l])                      # Update dp[mask][l]                             dp[mask][l] = min(dp[mask][l],                                             temp)          # Return minimum element      # from dp[(1 << N) - 1]     if min(dp[-1]) != float("inf"):         return min(dp[-1])          # If dp[-1] is inf then the      # partition is not possible      else:          return -1      # Driver Code if __name__ == "__main__":     # Given array     arr = [ 6, 3, 8, 1, 3, 1, 2, 2 ]     K = 4      # Function call     print(MinimizeSum(arr, K)) 
C#
using System; using System.Collections.Generic; using System.Linq;  public class GFG {     // Function to minimize the sum of     // difference between maximums and     // minimums of K subsets of an array     public static int MinimizeSum(List<int> nums, int k)     {         // Stores count of elements         // in an array         int n = nums.Count;          if (k == n) {             return 0;         }          // Initialize DP[][] array         int inf = 1_000_000_000;         int[][] dp = new int[1 << n][];         for (int i = 0; i < dp.Length; i++) {             dp[i] = new int[n];             for (int j = 0; j < n; j++) {                 dp[i][j] = inf;             }         }          // Sort the array         nums.Sort();          // Mark i-th element as not selected         for (int i = 0; i < n; i++) {             dp[1 << i][i] = 0;         }          // Iterate over all possible         // values of mask         for (int mask = 0; mask < (1 << n); mask++) {              // Store count of set bits             // in mask             List<int> n_z_bits = new List<int>();              // Store index of element which is             // already selected in a subset             for (int i = 0; i < n; i++) {                 if ((mask >> i & 1) == 1) {                     n_z_bits.Add(i);                 }             }              // If count of set bits in mask mod (n // k)             // equal             // to 1             if (n_z_bits.Count % (n / k) == 1) {                 for (int i = 0; i < n_z_bits.Count; i++) {                     for (int j = i + 1; j < n_z_bits.Count;                          j++) {                         int temp                             = dp[mask ^ (1 << n_z_bits[j])]                                 [n_z_bits[i]];                         dp[mask][n_z_bits[j]] = Math.Min(                             dp[mask][n_z_bits[j]], temp);                     }                 }             }             else {                 for (int i = 0; i < n_z_bits.Count; i++) {                     for (int j = i + 1; j < n_z_bits.Count;                          j++) {                         if (nums[n_z_bits[i]]                             != nums[n_z_bits[j]]) {                             int maskT                                 = mask ^ (1 << n_z_bits[j]);                             int temp                                 = (dp[maskT][n_z_bits[i]]                                    + nums[n_z_bits[i]]                                    - nums[n_z_bits[j]]);                             dp[mask][n_z_bits[j]]                                 = Math.Min(                                     dp[mask][n_z_bits[j]],                                     temp);                         }                     }                 }             }         }          // Return minimum element         // from dp[(1 << N) - 1]         int minVal = inf;         for (int i = 0; i < n; i++) {             minVal = Math.Min(minVal, dp[(1 << n) - 1][i]);         }          // If dp[-1] is inf then the         // partition is not possible         if (minVal == inf) {             return -1;         }         else {             return 999999999 - minVal;         }     }      // Driver Code     static void Main(string[] args)     {         // Given array          List<int> arr             = new List<int>{ 6, 3, 8, 1, 3, 1, 2, 2 };         int k = 4;         Console.WriteLine(MinimizeSum(arr, k));     }     // This code is contributed by Aditya Sharma. } 
JavaScript
// Javascript equivalent  // Function to minimize the sum of // difference between maximums and // minimums of K subsets of an array function MinimizeSum(nums, k) {     // Stores count of elements     // in an array     let n = nums.length;      //Base Case     if (k == n) {         return 0;     }      // Initialize DP[][] array     let inf = 1000000000;     let dp = new Array(1 << n);     for (let i = 0; i < dp.length; i++) {         dp[i] = Array(n).fill(inf);     }      // Sort the array     nums.sort((a, b) => a - b);      // Mark i-th element as not selected     for (let i = 0; i < n; i++) {         dp[1 << i][i] = 0;     }      // Iterate over all possible     // values of mask     for (let mask = 0; mask < (1 << n); mask++) {         // Store count of set bits         // in mask         let n_z_bits = [];          // Store index of element which is         // already selected in a subset         for (let i = 0; i < n; i++) {             if ((mask >> i & 1) == 1) {                 n_z_bits.push(i);             }         }          // If count of set bits in mask mod (n // k) equal         // to 1         if (n_z_bits.length % (n / k) == 1) {             for (let i = 0; i < n_z_bits.length; i++) {                 for (let j = i + 1; j < n_z_bits.length; j++) {                     let temp =                         dp[mask ^ (1 << n_z_bits[j])][n_z_bits[i]];                     dp[mask][n_z_bits[j]] = Math.min(                         dp[mask][n_z_bits[j]],                         temp                     );                 }             }         } else {             for (let i = 0; i < n_z_bits.length; i++) {                 for (let j = i + 1; j < n_z_bits.length; j++) {                     if (nums[n_z_bits[i]] != nums[n_z_bits[j]]) {                         // Check if l-th element                         // is already selected or not                         let maskT = mask ^ (1 << n_z_bits[j]);                         let temp =                             dp[maskT][n_z_bits[i]] +                             nums[n_z_bits[i]] -                             nums[n_z_bits[j]];                         // Update dp[mask][l]                         dp[mask][n_z_bits[j]] = Math.min(                             dp[mask][n_z_bits[j]],                             temp                         );                     }                 }             }         }     }      // Return minimum element     // from dp[(1 << N) - 1]     let minVal = inf;      // If dp[-1] is inf then the     // partition is not possible     for (let i = 0; i < n; i++) {         minVal = Math.min(minVal, dp[(1 << n) - 1][i]);     }      if (minVal == inf) {         return -1;     } else {         return 999999999 - minVal;     } }  let arr = [6,3,8,1,3,1,2,2]; let k = 4; console.log(MinimizeSum(arr,k)); 
Output:
6

Time Complexity: O(N^2 * 2N)
Auxiliary Space: O(N^2  * 2N)   

/* Complexity Analysis corrected by RainX */


Next Article
Minimize count of Subsets with difference between maximum and minimum element not exceeding K
author
saikumarkudikala
Improve
Article Tags :
  • Dynamic Programming
  • Greedy
  • Sorting
  • Mathematical
  • Competitive Programming
  • DSA
  • Arrays
  • subset
  • Commonfloor
  • interview-preparation
  • Bitwise-XOR
Practice Tags :
  • Arrays
  • Dynamic Programming
  • Greedy
  • Mathematical
  • Sorting
  • subset

Similar Reads

  • Minimize count of Subsets with difference between maximum and minimum element not exceeding K
    Given an array arr[ ] and an integer K, the task is to split the given array into minimum number of subsets having the difference between the maximum and the minimum element ≤ K. Examples: Input: arr[ ] = {1, 3, 7, 9, 10}, K = 3Output: 2Explanation:One of the possible subsets of arr[] are {1, 3} and
    5 min read
  • Minimize the difference between minimum and maximum elements
    Given an array of [Tex]N [/Tex]integers and an integer [Tex]k [/Tex]. It is allowed to modify an element either by increasing or decreasing them by k (only once).The task is to minimize and print the maximum difference between the shortest and longest towers. Examples: Input: arr[] = {1, 10, 8, 5},
    8 min read
  • Minimize difference between maximum and minimum element of all possible subarrays
    Given an array arr[ ] of size N, the task is to find the minimum difference between maximum and minimum elements of all possible sized subarrays of arr[ ]. Examples: Input: arr[] = { 5, 14, 7, 10 } Output: 3Explanation: {7, 10} is the subarray having max element = 10 & min element = 7, and their
    5 min read
  • Min difference between maximum and minimum element in all Y size subarrays
    Given an array arr[] of size N and integer Y, the task is to find a minimum of all the differences between the maximum and minimum elements in all the sub-arrays of size Y. Examples: Input: arr[] = { 3, 2, 4, 5, 6, 1, 9 } Y = 3Output: 2Explanation:All subarrays of length = 3 are:{3, 2, 4} where maxi
    15+ min read
  • Maximum subset sum having difference between its maximum and minimum in range [L, R]
    Given an array arr[] of N positive integers and a range [L, R], the task is to find the maximum subset-sum such that the difference between the maximum and minimum elements of the subset lies in the given range. Examples: Input: arr[] = {6, 5, 0, 9, 1}, L = 0, R = 3Output: 15Explanation: The subset
    9 min read
  • Minimize difference between maximum and minimum array elements by exactly K removals
    Given an array arr[] consisting of N positive integers and an integer K, the task is to minimize the difference between the maximum and minimum element in the given array after removing exactly K elements. Examples: Input: arr[] = {5, 1, 6, 7, 12, 10}, K = 3Output: 2Explanation:Remove elements 12, 1
    6 min read
  • Minimum difference between max and min of all K-size subsets
    Given an array of integer values, we need to find the minimum difference between the maximum and minimum of all possible K-length subsets. Examples : Input : arr[] = [3, 5, 100, 101, 102] K = 3 Output : 2 Explanation : Possible subsets of K-length with their differences are, [3 5 100] max min diff i
    7 min read
  • Split array into minimum number of subsets having difference between maximum and minimum element at most K
    Given an array arr[] consisting of N integers and an integer K, the task is to find the minimum number of sets, the array elements can be divided into such that the difference between the maximum and minimum element of each set is at most K. Examples: Input: arr[] = {1, 2, 3, 4, 5}, K = 2 Output: 2E
    6 min read
  • Minimize difference between maximum and minimum array elements by removing a K-length subarray
    Given an array arr[] consisting of N integers and an integer K, the task is to find the minimum difference between the maximum and minimum element present in the array after removing any subarray of size K. Examples: Input: arr[] = {4, 5, 8, 9, 1, 2}, K = 2Output: 4Explanation: Remove the subarray {
    10 min read
  • Split a given array into K subarrays minimizing the difference between their maximum and minimum
    Given a sorted array arr[] of N integers and an integer K, the task is to split the array into K subarrays such that the sum of the difference of maximum and minimum element of each subarray is minimized. Examples: Input: arr[] = {1, 3, 3, 7}, K = 4 Output: 0 Explanation: The given array can be spli
    6 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences