Minimize difference between maximum and minimum Subarray sum by splitting Array into 4 parts
Last Updated : 26 Oct, 2023
Given an array arr[] of size N, the task is to find the minimum difference between the maximum and the minimum subarray sum when the given array is divided into 4 non-empty subarrays.
Examples:
Input: N = 5, arr[] = {3, 2, 4, 1, 2}
Output: 2
Explanation: Divide the array into four parts as {3}, {2}, {4} and {1, 2}.
The sum of all the elements of these parts is 3, 2, 4, and 3.
The difference between the maximum and minimum is (4 - 2) = 2.
Input: N = 4, arr[] = {14, 6, 1, 7}
Output: 13
Explanation: Divide the array into four parts {14}, {6}, {1} and {7}.
The sum of all the elements of these four parts is 14, 6, 1, and 7.
The difference between the maximum and minimum (14 - 1) = 13.
It is the only possible way to divide the array into 4 possible parts
Naive Approach: The simplest way is to check for all possible combinations of three cuts and for each possible value check the subarray sums. Then calculate the minimum difference among all the possible combinations.
Time Complexity: O(N4)
Auxiliary Space: O(1)
Efficient Approach: The problem can be solved using the concept of prefix sum and two-pointer based on the below observation:
To divide the array into 4 subarrays three splits are required.
- If the second split is fixed (say in between index i and i+1) there will be one split to the left and one split to the right.
- The difference will be minimized when the two subarrays on left will have sum as close to each other as possible and same for the two subarrays on the right side of the split.
- The overall sum of the left part and of the right part can be obtained in constant time with the help of prefix sum calculation.
Now the split on the left part and on the right part can be decided optimally using the two-pointer technique.
- When the second split is fixed decide the left split by iterating through the left part till the difference between the sum of two parts is minimum.
- It can be found by minimizing the difference between the overall sum and twice the sum of any of the part. [The minimum value of this signifies that the difference between both the parts is minimum]
Do the same for the right part also.
Follow the below steps to solve this problem:
- Firstly pre-compute the prefix sum array of the given array.
- Create three variables i = 1, j = 2, and k = 3 each representing the cuts.(1 based indexing)
- Iterate through possible values of j from 2 to N - 1.
- For each value of j try to increase the value of i until the absolute difference between the Left_Sum_1 and Left_Sum_2 decreases and i is less than j (Left_Sum_1 and Left_Sum_2 are the sums of the two subarrays on the left).
- For each value of j, try to increase the value of k, until the absolute difference between the Right_Sum_1 and Right_Sum_2 decreases and k is less than N + 1 (Right_Sum_1 and Right_Sum_2 are the sums of the two subarrays of the right).
- Use prefix sum to directly calculate the values of Left_Sum_1, Left_Sum_2, Right_Sum_1 and Right_Sum_2.
- For each valid value of i, j and k, find the difference between the maximum and minimum value of the sum of elements of these parts
- The minimum among them is the answer.
Below is the implementation of the above approach:
C++ // C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum difference // between maximum and minimum subarray sum // after dividing the array into 4 subarrays long long int minSum(vector<int>& v, int n) { vector<long long int> a(n + 1); // Precompute the prefix sum a[0] = 0; for (int i = 1; i <= n; i++) { a[i] = a[i - 1] + v[i - 1]; } // Initialize the ans with large value long long int ans = 1e18; // There are total four parts means 3 cuts. // Here i, j, k represent those 3 cuts for (int i = 1, j = 2, k = 3; j < n; j++) { while (i + 1 < j && abs(a[j] - 2 * a[i]) > abs(a[j] - 2 * a[i + 1])) { i++; } while (k + 1 < n && abs(a[n] + a[j] - 2 * a[k]) > abs(a[n] + a[j] - 2 * a[k + 1])) { k++; } ans = min(ans, max({ a[i], a[j] - a[i], a[k] - a[j], a[n] - a[k] }) - min({ a[i], a[j] - a[i], a[k] - a[j], a[n] - a[k] })); } return ans; } // Driver Code int main() { vector<int> arr = { 3, 2, 4, 1, 2 }; int N = arr.size(); // Function call cout << minSum(arr, N); return 0; }
Java // Java program for the above approach public class GFG { // Function to find the minimum difference // between maximum and minimum subarray sum // after dividing the array into 4 subarrays static int minCost(int arr[], int n) { // Precompute the prefix sum int a[] = new int[n + 1]; a[0] = 0; for (int i = 1; i <= n; i++) { a[i] = a[i - 1] + arr[i - 1]; } // Initialize the ans with large value int ans = Integer.MAX_VALUE; // There are total four parts means 3 cuts. // Here i, j, k represent those 3 cuts for (int i = 1, j = 2, k = 3; j < n; j++) { while (i + 1 < j && Math.abs(a[j] - 2 * a[i]) > Math.abs(a[j] - 2 * a[i + 1])) { i++; } while (k + 1 < n && Math.abs(a[n] + a[j] - 2 * a[k]) > Math.abs(a[n] + a[j] - 2 * a[k + 1])) { k++; } ans = Math.min( ans, Math.max(a[i], Math.max(a[j] - a[i], Math.max(a[k] - a[j], a[n] - a[k]))) - Math.min( a[i], Math.min(a[j] - a[i], Math.min(a[k] - a[j], a[n] - a[k])))); } return ans; } // Driver Code public static void main(String[] args) { int arr[] = { 3, 2, 4, 1, 2 }; int N = arr.length; System.out.println(minCost(arr, N)); } } // This code is contributed by dwivediyash
Python3 # Python3 code to implement the approach # Function to find the minimum difference # between maximum and minimum subarray sum # after dividing the array into 4 subarrays def minSum(v, n): a = [0] # Precompute the prefix sum for i in range(1, n + 1): a.append(a[-1] + v[i - 1]) # Initialize the ans with large value ans = 10 ** 18 # There are total four parts means 3 cuts. # Here i, j, k represent those 3 cuts i = 1 j = 2 k = 3 while (j < n): while (i + 1 < j and abs(a[j] - 2 * a[i]) > abs(a[j] - 2 * a[i + 1])): i += 1 while (k + 1 < n and abs(a[n] + a[j] - 2 * a[k]) > abs(a[n] + a[j] - 2 * a[k + 1])): k += 1 ans = min(ans, max([a[i], a[j] - a[i], a[k] - a[j], a[n] - a[k]] ) - min([a[i], a[j] - a[i], a[k] - a[j], a[n] - a[k]])) j += 1 return ans # Driver Code arr = [3, 2, 4, 1, 2] N = len(arr) # Function call print(minSum(arr, N)) # this code is contributed by phasing17
C# // C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to find the minimum difference // between maximum and minimum subarray sum // after dividing the array into 4 subarrays static int minCost(int[] arr, int n) { // Precompute the prefix sum int[] a = new int[n + 1]; a[0] = 0; for (int i = 1; i <= n; i++) { a[i] = a[i - 1] + arr[i - 1]; } // Initialize the ans with large value int ans = Int16.MaxValue; // There are total four parts means 3 cuts. // Here i, j, k represent those 3 cuts for (int i = 1, j = 2, k = 3; j < n; j++) { while (i + 1 < j && Math.Abs(a[j] - 2 * a[i]) > Math.Abs(a[j] - 2 * a[i + 1])) { i++; } while (k + 1 < n && Math.Abs(a[n] + a[j] - 2 * a[k]) > Math.Abs(a[n] + a[j] - 2 * a[k + 1])) { k++; } ans = Math.Min( ans, Math.Max(a[i], Math.Max(a[j] - a[i], Math.Max(a[k] - a[j], a[n] - a[k]))) - Math.Min( a[i], Math.Min(a[j] - a[i], Math.Min(a[k] - a[j], a[n] - a[k])))); } return ans; } // Driver Code public static void Main(String[] args) { int[] arr = { 3, 2, 4, 1, 2 }; int N = arr.Length; // Function call Console.WriteLine(minCost(arr, N)); } } // This code is contributed by Pushpesh Raj
JavaScript <script> // JavaScript code to implement the approach // Function to find the minimum difference // between maximum and minimum subarray sum // after dividing the array into 4 subarrays const minSum = (v, n) => { let a = new Array(n + 1).fill(0); // Precompute the prefix sum a[0] = 0; for (let i = 1; i <= n; i++) { a[i] = a[i - 1] + v[i - 1]; } // Initialize the ans with large value let ans = 1e18; // There are total four parts means 3 cuts. // Here i, j, k represent those 3 cuts for (let i = 1, j = 2, k = 3; j < n; j++) { while (i + 1 < j && Math.abs(a[j] - 2 * a[i]) > Math.abs(a[j] - 2 * a[i + 1])) { i++; } while (k + 1 < n && Math.abs(a[n] + a[j] - 2 * a[k]) > Math.abs(a[n] + a[j] - 2 * a[k + 1])) { k++; } ans = Math.min(ans, Math.max(...[a[i], a[j] - a[i], a[k] - a[j], a[n] - a[k]]) - Math.min(...[a[i], a[j] - a[i], a[k] - a[j], a[n] - a[k]])); } return ans; } // Driver Code let arr = [3, 2, 4, 1, 2]; let N = arr.length; // Function call document.write(minSum(arr, N)); // This code is contributed by rakeshsahni </script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Brute Force in Python:
Approach:
- Define a function minimize_difference_1 that takes two inputs N and arr.
- Initialize a variable min_diff to infinity.
- Iterate over all possible split positions i, j, and k such that i < j < k < N.
- Compute the sum of the elements in the subarrays arr[:i], arr[i:j], arr[j:k], and arr[k:].
- Compute the maximum and minimum subarray sum from the four subarrays.
- Compute the difference between the maximum and minimum subarray sum.
- Update min_diff with the minimum value seen so far.
- Return min_diff as the answer.
C++ // C++ code for above approach #include <bits/stdc++.h> using namespace std; //Function to find the minimum difference // between minimum and maximum subarray int minimize_difference_1(int N, const vector<int>& arr) { // Initialize the minimum difference as maximum possible value int min_diff = INT_MAX; // Iterate through possible first split positions for (int i = 1; i < N - 2; i++) { // Iterate through possible second split positions for (int j = i + 1; j < N - 1; j++) { // Iterate through possible third split positions for (int k = j + 1; k < N; k++) { // Calculate sums of the four subarrays created by the splits int a = accumulate(arr.begin(), arr.begin() + i, 0); int b = accumulate(arr.begin() + i, arr.begin() + j, 0); int c = accumulate(arr.begin() + j, arr.begin() + k, 0); int d = accumulate(arr.begin() + k, arr.end(), 0); int max_sum = max({a, b, c, d}); int min_sum = min({a, b, c, d}); int diff = max_sum - min_sum; min_diff = min(min_diff, diff); } } } return min_diff; } int main() { int N = 4; vector<int> arr = {14, 6, 1, 7}; cout << minimize_difference_1(N, arr) << endl; // Output: 13 return 0; } // This code is contributed by Utkarsh Kumar
Java import java.util.*; class GFG { // Function to find the minimum difference // between minimum and maximum subarray static int minimize_difference_1(int N, ArrayList<Integer> arr) { // Initialize the minimum difference as maximum possible value int min_diff = Integer.MAX_VALUE; // Iterate through possible first split positions for (int i = 1; i < N - 2; i++) { // Iterate through possible second split positions for (int j = i + 1; j < N - 1; j++) { // Iterate through possible third split positions for (int k = j + 1; k < N; k++) { // Calculate sums of the four subarrays created by the splits int a = arr.subList(0, i).stream().mapToInt(Integer::intValue).sum(); int b = arr.subList(i, j).stream().mapToInt(Integer::intValue).sum(); int c = arr.subList(j, k).stream().mapToInt(Integer::intValue).sum(); int d = arr.subList(k, N).stream().mapToInt(Integer::intValue).sum(); int max_sum = Math.max(Math.max(a, b), Math.max(c, d)); int min_sum = Math.min(Math.min(a, b), Math.min(c, d)); int diff = max_sum - min_sum; min_diff = Math.min(min_diff, diff); } } } return min_diff; } // Driver code public static void main(String[] args) { int N = 4; ArrayList<Integer> arr = new ArrayList<>(Arrays.asList(14, 6, 1, 7)); // Function call System.out.println(minimize_difference_1(N, arr)); // Output: 13 } } // by phasing17
Python3 def minimize_difference_1(N, arr): min_diff = float('inf') for i in range(1, N-2): for j in range(i+1, N-1): for k in range(j+1, N): a = sum(arr[:i]) b = sum(arr[i:j]) c = sum(arr[j:k]) d = sum(arr[k:]) max_sum = max(a, b, c, d) min_sum = min(a, b, c, d) diff = max_sum - min_sum min_diff = min(min_diff, diff) return min_diff N = 4 arr = [14, 6, 1, 7] print(minimize_difference_1(N, arr)) # Output: 13
C# using System; using System.Collections.Generic; using System.Linq; class GFG { // Function to find the minimum difference // between minimum and maximum subarray static int MinimizeDifference1(int N, List<int> arr) { // Initialize the minimum difference as maximum // possible value int minDiff = int.MaxValue; // Iterate through possible first split positions for (int i = 1; i < N - 2; i++) { // Iterate through possible second split // positions for (int j = i + 1; j < N - 1; j++) { // Iterate through possible third split // positions for (int k = j + 1; k < N; k++) { // Calculate sums of the four subarrays // created by the splits int a = arr.GetRange(0, i).Sum(); int b = arr.GetRange(i, j - i).Sum(); int c = arr.GetRange(j, k - j).Sum(); int d = arr.GetRange(k, N - k).Sum(); int maxSum = Math.Max(Math.Max(a, b), Math.Max(c, d)); int minSum = Math.Min(Math.Min(a, b), Math.Min(c, d)); int diff = maxSum - minSum; minDiff = Math.Min(minDiff, diff); } } } return minDiff; } // Driver code public static void Main(string[] args) { int N = 4; List<int> arr = new List<int>{ 14, 6, 1, 7 }; // Function call Console.WriteLine( MinimizeDifference1(N, arr)); // Output: 13 } }
JavaScript // Function to find the minimum difference // between minimum and maximum subarray function minimizeDifference(N, arr) { // Initialize the minimum difference as maximum possible value let minDiff = Number.MAX_VALUE; // Iterate through possible first split positions for (let i = 1; i < N - 2; i++) { // Iterate through possible second split positions for (let j = i + 1; j < N - 1; j++) { // Iterate through possible third split positions for (let k = j + 1; k < N; k++) { // Calculate sums of the four subarrays created by the splits let a = arr.slice(0, i).reduce((acc, val) => acc + val, 0); let b = arr.slice(i, j).reduce((acc, val) => acc + val, 0); let c = arr.slice(j, k).reduce((acc, val) => acc + val, 0); let d = arr.slice(k).reduce((acc, val) => acc + val, 0); // Calculate the maximum and minimum sums let maxSum = Math.max(a, b, c, d); let minSum = Math.min(a, b, c, d); // Calculate the difference and update minDiff if needed let diff = maxSum - minSum; minDiff = Math.min(minDiff, diff); } } } return minDiff; } const N = 4; const arr = [14, 6, 1, 7]; console.log(minimizeDifference(N, arr)); // Output: 13
A time complexity of O(2^N * N) because we generate all 2^N partitions and for each partition, we need to calculate the maximum and minimum subarray sum, which takes O(N) time.
The space complexity is O(N) to store the input array.
Similar Reads
Minimize difference between maximum and minimum array elements by removing a K-length subarray
Given an array arr[] consisting of N integers and an integer K, the task is to find the minimum difference between the maximum and minimum element present in the array after removing any subarray of size K. Examples: Input: arr[] = {4, 5, 8, 9, 1, 2}, K = 2Output: 4Explanation: Remove the subarray {
10 min read
Split array into K Subarrays to minimize sum of difference between min and max
Given a sorted array arr[] of size N and integer K, the task is to split the array into K non-empty subarrays such that the sum of the difference between the maximum element and the minimum element of each subarray is minimized. Note: Every element of the array must be included in one subarray and e
6 min read
Split a given array into K subarrays minimizing the difference between their maximum and minimum
Given a sorted array arr[] of N integers and an integer K, the task is to split the array into K subarrays such that the sum of the difference of maximum and minimum element of each subarray is minimized. Examples: Input: arr[] = {1, 3, 3, 7}, K = 4 Output: 0 Explanation: The given array can be spli
6 min read
Split array into subarrays such that sum of difference between their maximums and minimums is maximum
Given an array arr[] consisting of N integers, the task is to split the array into subarrays such that the sum of the difference between the maximum and minimum elements for all the subarrays is maximum. Examples : Input: arr[] = {8, 1, 7, 9, 2}Output: 14Explanation:Consider splitting the given arra
6 min read
Minimize difference between maximum and minimum element of all possible subarrays
Given an array arr[ ] of size N, the task is to find the minimum difference between maximum and minimum elements of all possible sized subarrays of arr[ ]. Examples: Input: arr[] = { 5, 14, 7, 10 } Output: 3Explanation: {7, 10} is the subarray having max element = 10 & min element = 7, and their
5 min read
Minimize the difference between the maximum and minimum values of the modified array
Given an array A of n integers and integer X. You may choose any integer between [Tex]-X\leq k\leq X [/Tex], and add k to A[i] for each [Tex]0\leq i \leq n-1 [/Tex]. The task is to find the smallest possible difference between the maximum value of A and the minimum value of A after updating array A.
5 min read
Maximum subset sum having difference between its maximum and minimum in range [L, R]
Given an array arr[] of N positive integers and a range [L, R], the task is to find the maximum subset-sum such that the difference between the maximum and minimum elements of the subset lies in the given range. Examples: Input: arr[] = {6, 5, 0, 9, 1}, L = 0, R = 3Output: 15Explanation: The subset
9 min read
Split array into K subarrays with minimum sum of absolute difference between adjacent elements
Given an array, arr[] of size N and an integer K, the task is to split the array into K subarrays minimizing the sum of absolute difference between adjacent elements of each subarray. Examples: Input: arr[] = {1, 3, -2, 5, -1}, K = 2Output: 13Explanation: Split the array into following 2 subarrays:
8 min read
Maximum possible difference between two Subarrays after removing N elements from Array
Given an array arr[] which is of 3*N size, the task is to remove N elements and divide the whole array into two equal parts such that the difference of the sum of the left subarray and right subarray should yield to maximum. Examples: Input: arr[] = [5, 4, 4, 2, 3, 3]Output: 4Explanation: The '2' el
10 min read
Split given arrays into subarrays to maximize the sum of maximum and minimum in each subarrays
Given an array arr[] consisting of N integers, the task is to maximize the sum of the difference of the maximum and minimum in each subarrays by splitting the given array into non-overlapping subarrays. Examples: Input: arr[] = {8, 1, 7, 9, 2}Output: 14Explanation:Split the given array arr[] as {8,
7 min read