Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Number System and Arithmetic
  • Algebra
  • Set Theory
  • Probability
  • Statistics
  • Geometry
  • Calculus
  • Logarithms
  • Mensuration
  • Matrices
  • Trigonometry
  • Mathematics
Open In App
Next Article:
Area of a Triangle in Coordinate Geometry
Next article icon

Mid Point Formula in Coordinate Geometry

Last Updated : 14 Jan, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Mid point formula in coordinate geometry provides a way to find the mid point of a line segment when the coordinates of the starting and ending points ( i.e. (x1, y1) and (x2, y2) )of the line segment is known. The mid point divides the line in two equal halves i.e the ratio of the sections of the line in which the midpoint divides it is 1:1.

 Mid Point of Line
Mid Point of Line

Formula of Mid Point of Line

For a line segment AB in Cartesian coordinate where the x-axis coordinate of point A is x1 and the y-axis coordinate of point A is y1 and similarly, the x-axis coordinate of point B is x2 and the y-axis coordinate of point B is y2, the mid-point of the line will be given by (xm, ym).

The formula for the mid-point  (xm, ym) is:

Mid Point Formula
Mid Point Formula

Example: Find the coordinates of the midpoint of a line segment whose endpoints are (5, 6) and (-3, 4).

Solution:

As we know, the midpoint of a line segment is given by the formula:

Midpoint = ((x1+x2)/2 , (y1+y2)/2)

where (x1, y1) and (x2, y2) are the coordinates of the endpoints of the line segment.

Midpoint = ((5+(-3))/2, (6+4)/2)

⇒ Midpoint = (2/2, 10/2)

⇒ Midpoint = (1, 5)

Therefore, the coordinates of the midpoint of the line segment are (1, 5).

Derivation of Mid Point Formula

Let P(x1,y1) and Q(x2,y2) be the two ends of a given line in a coordinate plane, and R(x,y) be the point on that line which divides PQ in the ratio m1:m2 such that

PR/RQ = m1/m2  . . .(1)

Derivation of Mid Point Formula
Derivation of Mid Point Formula

Drawing lines PM, QN, and RL perpendicular on the x-axis and through R draw a straight line parallel to the x-axis to meet MP at S and NQ at T.

Hence from the figure, we can say:

SR = ML = OL - OM = x - x1 . . . (2)

RT = LN = ON - Ol = x2 - x . . . (3)

PS = MS - MP = LR - MP = y - y1 . . . (4)

TQ = NQ - NT = NQ - LR = y2 - y . . . (5)

Now triangle ∆SPR is similar to triangle ∆TQR.
Therefore,

SR/RT = PR/RQ

By using equations 2, 3, and 1, we know:

x - x1 / x2 - x = m1 / m2

⇒ m2x - m2x1 = m1x2 - m1x
⇒ m1x + m2x = m1x2 + m2x1
⇒ (m1 + m2)x = m1x2 + m2x1

⇒ x = (m1x2 + m2x1) / (m1 + m2)

Now triangle ∆SPR is similar to triangle ∆TQR,
Therefore,

PS/TQ = PR/RQ

By using equations 4, 5, and 1, we know:

y - y1 / y2 - y = m1 / m2

⇒ m2y - m2y1 = m1y2 - m1y
⇒ m1y + m2y = m1y2 + m2y1
⇒ (m1 + m2)y = m1y2 + m2y1

⇒ y = (m1y2 + m2y1) / (m1 + m2)

Hence the coordinates of R(x,y) are:

R(x, y) = (m1x2 + m2x1) / (m1 + m2), (m1y2 + m2y1) / (m1 + m2)

As we had to calculate the midpoint, therefore, we keep the values both of m1 and m2 as same i.e. 

For the mid-point we know by the definition of mid-point, m1 = m2 = 1.
(x, y) = ((1.x2 + 1.x1) / (1 + 1), (1.y2 + 1.y1) / (1 + 1))

x, y = (x2 + x1) / 2, (y2 + y1) / 2

Related Formula

There are similar formulas to the midpoint formula, which are as follows:

  • Section Formula
  • Centroid Formula

Section Formula

Section Formula is used to find the coordinate of the point which divides the given line segment in the desired ratio. Let us assume the endpoints of a line segment are A and B with coordinates (x1, y1) and (x2, y2), and P be the point that divides the line segment joining the line AB in m:n. Then coordinate of P is given by:

P(x, y) = [(mx2 + nx1)/(m+n) , (my2 + ny1)/(m+n)]

Centroid Formula

The Centroid formula is used to find the center point of polygons and mathematically for triangles and quadrilaterals is given as follows:

Centroid of a Triangle Formula

The coordinates of the centroid of a triangle with vertices (x1, y1), (x2, y2), and (x3, y3) are:

C(x, y) = ((x1 + x2 + x3)/3, (y1 + y2 + y3)/3)

Centroid of triangle
Centroid of Triangle

Centroid of a Quadrilateral Formula

The coordinates of the centroid of a quadrilateral with vertices (x1, y1), (x2, y2), (x3, y3), and (x4, y4) are:

C(x, y) = ((x1 + x2 + x3+ x4)/4, (y1 + y2 + y3+ y4)/4)

Centroid of Quadrilateral
Centroid of Quadrilateral

Solved Questions on Mid-Point Formula

Question 1: What is the mid-point of line segment AB where point A is at (6,8) and point B is (3,1)?
Solution: 

Let the midpoint be M(xm, ym), 

xm = (x1 + x2) / 2
x1 = 6, x2 = 3

Thus, xm = (6 + 3) / 2 = 9 / 2 = 4.5

ym = (y1 + y2) / 2
y1 = 8, y2 = 1

Thus, ym = (8 + 1) / 2 = 9 / 2 = 4.5

Hence the midpoint of line AB is (4.5, 4.5).

Question 2: Find the value of p so that (–2, 2.5) is the midpoint between (p, 2) and (–1, 3).
Solution:

Let the midpoint be M(xm, ym) = (-2, 2.5) where,
x1 = -1, xm = -2

y-coordinate of the end point is already known as 2, hence we need to find only the x-coordinate

xm = (x1 + x2) / 2
-2 = (-1 + p) / 2
-4 = -1 +
p = -3

Hence other end-point of line is (-3, 2).

Question 3: If the coordinates of the endpoints of a line segment are (3, 4) and (7, 8), find the distance between the midpoint of the line segment and the point (3, 4).
Solution: 

Let A(3, 4) and B(7, 8) be the endpoints of the given line segment, and C is the midpoint of line segment AB.

Then using midpoint formula,
Coordinate of C = ( (3+7)/2 , (4+8)/2 ) = (5, 6)

Using Distance Formula
Distance = √{(x2 - x1)2 + (y2 - y1)2}
⇒ Distance = √{(3 - 5)2 + (4 - 6)2}
⇒ Distance =√{(-2)2 + (-2)2}
⇒ Distance =√8 = 2√2

Therefore, distance between midpoint of line segment and point (3, 4) is 2√2.

Also Read:

  • Distance Formula
  • Coordinate Geometry

Next Article
Area of a Triangle in Coordinate Geometry

A

ankurv343
Improve
Article Tags :
  • Mathematics
  • School Learning
  • Class 10
  • Coordinate Geometry
  • Maths-Class-10

Similar Reads

    Chapter 1: Real Numbers

    Euclid Division Lemma
    Euclid's Division Lemma which is one of the fundamental theorems proposed by the ancient Greek mathematician Euclid which was used to prove various properties of integers. The Euclid's Division Lemma also serves as a base for Euclid's Division Algorithm which is used to find the GCD of any two numbe
    5 min read
    Fundamental Theorem of Arithmetic
    The Fundamental Theorem of Arithmetic is a useful method to understand the prime factorization of any number. The factorization of any composite number can be uniquely written as a multiplication of prime numbers, regardless of the order in which the prime factors appear. The figures above represent
    6 min read
    HCF / GCD and LCM - Definition, Formula, Full Form, Examples
    The full form of HCF/GCD is the Highest Common Factor/Greatest Common Divisor(Both terms mean the same thing), while the full form of LCM is the Least Common Multiple. HCF is the largest number that divides two or more numbers without leaving a remainder, whereas LCM is the smallest multiple that is
    9 min read
    Decimal Expansions of Rational Numbers
    Real numbers are simply the combination of rational and irrational numbers, in the number system. In general, all the arithmetic operations can be performed on these numbers and they can be represented in the number line, also. So in this article let's discuss some rational and irrational numbers an
    6 min read

    Chapter 2: Polynomials

    Geometrical meaning of the Zeroes of a Polynomial
    An algebraic identity is an equality that holds for any value of its variables. They are generally used in the factorization of polynomials or simplification of algebraic calculations. A polynomial is just a bunch of algebraic terms added together, for example, p(x) = 4x + 1 is a degree-1 polynomial
    8 min read
    Relationship between Zeroes and Coefficients of a Polynomial
    Polynomials are algebraic expressions with constants and variables that can be linear i.e. the highest power o the variable is one, quadratic and others. The zeros of the polynomials are the values of the variable (say x) that on substituting in the polynomial give the answer as zero. While the coef
    9 min read
    Division Algorithm for Polynomials
    Polynomials are those algebraic expressions that contain variables, coefficients, and constants. For Instance, in the polynomial 8x2 + 3z - 7, in this polynomial, 8,3 are the coefficients, x and z are the variables, and 7 is the constant. Just as simple Mathematical operations are applied on numbers
    5 min read
    Division Algorithm Problems and Solutions
    Polynomials are made up of algebraic expressions with different degrees. Degree-one polynomials are called linear polynomials, degree-two are called quadratic and degree-three are called cubic polynomials. Zeros of these polynomials are the points where these polynomials become zero. Sometimes it ha
    6 min read

    Chapter 3: Pair of Linear Equations in Two Variables

    Pair of Linear Equations in Two Variables
    Linear Equation in two variables are equations with only two variables and the exponent of the variable is 1. This system of equations can have a unique solution, no solution, or an infinite solution according to the given initial condition. Linear equations are used to describe a relationship betwe
    11 min read
    Number of Solutions to a System of Equations Algebraically
    A statement that two mathematical expressions of one or more variables are identical is called an equation. Linear equations are those in which the powers of all the variables concerned are equal. A linear equation's degree is always one. A solution of the simultaneous pair of linear equations is a
    7 min read
    Graphical Methods of Solving Pair of Linear Equations in Two Variables
    A system of linear equations is just a pair of two lines that may or may not intersect. The graph of a linear equation is a line. There are various methods that can be used to solve two linear equations, for example, Substitution Method, Elimination Method, etc. An easy-to-understand and beginner-fr
    8 min read
    Algebraic Methods of Solving Pair of Linear Equations in Two Variables
    When solving a pair of linear equations in two variables, there are several algebraic methods you can use. Here’s a summary of the most common methods: Let's imagine a situation, Ankita went to a fair in her village. She wanted to go on rides like the Giant Wheel and play Hoopla (a game in which a r
    9 min read
    Equations Reducible to Linear Form
    Equations Reducible to Linear Form" refers to equations that can be transformed or rewritten into a linear equation. These equations typically involve variables raised to powers other than 1, such as squared terms, cubed terms, or higher. By applying suitable substitutions or transformations, these
    9 min read

    Chapter 4: Quadratic Equations

    Quadratic Equations
    A Quadratic equation is a second-degree polynomial equation that can be represented as ax2 + bx + c = 0. In this equation, x is an unknown variable, a, b, and c are constants, and a is not equal to 0. The solutions of a quadratic equation are known as its roots. These roots can be found using method
    12 min read
    Solving Quadratic Equations
    A quadratic equation, typically in the form ax² + bx + c = 0, can be solved using different methods including factoring, completing the square, quadratic formula, and the graph method. While Solving Quadratic Equations we try to find a solution that represent the points where this the condition Q(x)
    8 min read
    Roots of Quadratic Equation
    The roots of a quadratic equation are the values of x that satisfy the equation. The roots of a quadratic equation are also called zeros of a quadratic equation. A quadratic equation is generally in the form: ax2 + bx + c = 0Where:a, b, and c are constants (with a ≠ 0).x represents the variable.Root
    13 min read

    Chapter 5: Arithmetic Progressions

    Arithmetic Progressions Class 10- NCERT Notes
    Arithmetic Progressions (AP) are fundamental sequences in mathematics where each term after the first is obtained by adding a constant difference to the previous term. Understanding APs is crucial for solving problems related to sequences and series in Class 10 Mathematics. These notes cover the ess
    7 min read
    Arithmetic Progression - Common difference and Nth term | Class 10 Maths
    Arithmetic Progression is a sequence of numbers where the difference between any two successive numbers is constant. For example 1, 3, 5, 7, 9....... is in a series which has a common difference (3 - 1) between two successive terms is equal to 2. If we take natural numbers as an example of series 1,
    5 min read
    Arithmetic Progression – Sum of First n Terms | Class 10 Maths
    Arithmetic Progression is a sequence of numbers where the difference between any two successive numbers is constant. For example 1, 3, 5, 7, 9……. is in a series which has a common difference (3 – 1) between two successive terms is equal to 2. If we take natural numbers as an example of series 1, 2,
    8 min read

    Chapter 6: Triangles

    Types of Triangles
    A triangle is a polygon with three sides and three angles. It is one of the simplest and most fundamental shapes in geometry. A triangle has these key Properties:Sides: A triangle has three sides, which can have different lengths.Angles: A triangle has three interior angles, and the sum of these ang
    5 min read
    Angle Sum Property of a Triangle
    Angle Sum Property of a Triangle is the special property of a triangle that is used to find the value of an unknown angle in the triangle. It is the most widely used property of a triangle and according to this property, "Sum of All the Angles of a Triangle is equal to 180º." Angle Sum Property of a
    8 min read
    Construction of Similar Triangles
    The basic construction techniques allow the construction of perpendicular bisectors, angle bisectors, and so on. These basic techniques can be used for more complex constructions. These constructions are very essential for the designers who design buildings, roads, machines .. Etc. So, these techniq
    8 min read
    Criteria for Similarity of Triangles
    Things are often referred similar when the physical structure or patterns they show have similar properties, Sometimes two objects may vary in size but because of their physical similarities, they are called similar objects. For example, a bigger Square will always be similar to a smaller square. In
    9 min read
    Similar Triangles
    Similar Triangles are triangles with the same shape but can have variable sizes. Similar triangles have corresponding sides in proportion to each other and corresponding angles equal to each other. Similar triangles are different from congruent triangles. Two congruent figures are always similar, bu
    15 min read
    Pythagoras Theorem | Formula, Proof and Examples
    Pythagoras Theorem explains the relationship between the three sides of a right-angled triangle and helps us find the length of a missing side if the other two sides are known. It is also known as the Pythagorean theorem. It states that in a right-angled triangle, the square of the hypotenuse is equ
    9 min read
    Basic Proportionality Theorem (BPT) Class 10 | Proof and Examples
    Basic Proportionality Theorem: Thales theorem is one of the most fundamental theorems in geometry that relates the parts of the length of sides of triangles. The other name of the Thales theorem is the Basic Proportionality Theorem or BPT. BPT states that if a line is parallel to a side of a triangl
    8 min read
    Criteria for Similarity of Triangles
    Things are often referred similar when the physical structure or patterns they show have similar properties, Sometimes two objects may vary in size but because of their physical similarities, they are called similar objects. For example, a bigger Square will always be similar to a smaller square. In
    9 min read

    Chapter 7: Coordinate Geometry

    Coordinate Geometry
    Coordinate geometry is a branch of mathematics that combines algebra and geometry using a coordinate plane. It helps us represent points, lines, and shapes with numbers and equations, making it easier to analyze their positions, distances, and relationships. From plotting points to finding the short
    3 min read
    Distance formula - Coordinate Geometry | Class 10 Maths
    The distance formula is one of the important concepts in coordinate geometry which is used widely. By using the distance formula we can find the shortest distance i.e drawing a straight line between points. There are two ways to find the distance between points:Pythagorean theoremDistance formulaTab
    9 min read
    Section Formula
    Section Formula is a useful tool in coordinate geometry, which helps us find the coordinate of any point on a line which is dividing the line into some known ratio. Suppose a point divides a line segment into two parts which may be equal or not, with the help of the section formula we can find the c
    14 min read
    Mid Point Formula in Coordinate Geometry
    Mid point formula in coordinate geometry provides a way to find the mid point of a line segment when the coordinates of the starting and ending points ( i.e. (x1, y1) and (x2, y2) )of the line segment is known. The mid point divides the line in two equal halves i.e the ratio of the sections of the l
    6 min read
    Area of a Triangle in Coordinate Geometry
    There are various methods to find the area of the triangle according to the parameters given, like the base and height of the triangle, coordinates of vertices, length of sides, etc. In this article, we will discuss the method of finding area of any triangle when its coordinates are given.Area of Tr
    6 min read

    Chapter 8: Introduction to Trigonometry

    Trigonometric Ratios
    There are three sides of a triangle Hypotenuse, Adjacent, and Opposite. The ratios between these sides based on the angle between them is called Trigonometric Ratio. The six trigonometric ratios are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (cosec), and secant (sec).As give
    4 min read
    Trigonometric Ratios of Some Specific Angles
    Trigonometry is all about triangles or to be more precise the relationship between the angles and sides of a triangle (right-angled triangle). In this article, we will be discussing the ratio of sides of a right-angled triangle concerning its acute angle called trigonometric ratios of the angle and
    6 min read
    Reciprocal of Trigonometric Ratios
    Trigonometry is all about triangles or to be more precise about the relation between the angles and sides of a right-angled triangle. In this article, we will be discussing about the ratio of sides of a right-angled triangle with respect to its acute angle called trigonometric ratios of the angle an
    5 min read
    Trigonometric Identities
    Trigonometric identities play an important role in simplifying expressions and solving equations involving trigonometric functions. These identities, which include relationships between angles and sides of triangles, are widely used in fields like geometry, engineering, and physics. Some important t
    10 min read
    Applications of Trigonometry in Real Life
    Trigonometry has a lot of real-life applications of trigonometry such as in astronomy to calculate the distance between planets and stars. Other than that, one application of trigonometry is the calculation of the height and distance of various objects in the real world.Before understanding the appl
    12 min read

    Chapter 9: Some Applications of Trigonometry

    Applications of Trigonometry in Real Life
    Trigonometry has a lot of real-life applications of trigonometry such as in astronomy to calculate the distance between planets and stars. Other than that, one application of trigonometry is the calculation of the height and distance of various objects in the real world.Before understanding the appl
    12 min read
    Height and Distance | Applications of Trigonometry
    Height is the measurement of an item in the vertical direction, whereas distance is the measurement of an object in the horizontal direction. Heights and Distances are the real-life applications of trigonometry which is useful to astronomers, navigators, architects, surveyors, etc. in solving proble
    6 min read

    Chapter 10: Circles

    Tangent to a Circle
    Tangent in Circles are the line segments that touch the given curve only at one particular point. Tangent is a Greek word meaning "To Touch". For a circle, we can say that the line which touches the circle from the outside at one single point on the circumference is called the tangent of the circle.
    10 min read
    Theorem - The tangent at any point of a circle is perpendicular to the radius through the point of contact
    A tangent is a straight line drawn from an external point that touches a circle at exactly one point on the circumference of the circle. There can be an infinite number of tangents to a circle. These tangents follow certain properties that can be used as identities to perform mathematical computatio
    3 min read
    Number of Tangents from a Point on a Circle
    A circle is a collection of all the points in a plane that are at a constant distance from a particular point. This distance is called the radius of the circle and the fixed point is called the centre.  A straight line and a circle can co-exist in three ways, one can be a straight line with no inter
    11 min read
    Theorem - The lengths of tangents drawn from an external point to a circle are equal - Circles | Class 10 Maths
    Tangent is a straight line drawn from an external point that touches a circle at exactly one point on the circumference of the circle. There can be an infinite number of tangents of a circle. These tangents follow certain properties that can be used as identities to perform mathematical computations
    5 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences