Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Practice Sorting
  • MCQs on Sorting
  • Tutorial on Sorting
  • Bubble Sort
  • Quick Sort
  • Merge Sort
  • Insertion Sort
  • Selection Sort
  • Heap Sort
  • Sorting Complexities
  • Radix Sort
  • ShellSort
  • Counting Sort
  • Bucket Sort
  • TimSort
  • Bitonic Sort
  • Uses of Sorting Algorithm
Open In App
Next Article:
Merge a linked list into another linked list at alternate positions
Next article icon

Merge K sorted Doubly Linked List in Sorted Order

Last Updated : 17 Jan, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given K sorted doubly linked list. The task is to merge all sorted doubly linked list in single sorted doubly linked list means final list must be sorted.
Examples: 
 

Input: 
List 1 : 2 <-> 7 <-> 8 <-> 12 <-> 15 <-> NULL 
List 2 : 4 <-> 9 <-> 10 <-> NULL 
List 3 : 5 <-> 9 <-> 11 <-> 16 <-> NULL 
Output: 2 4 5 7 8 9 9 10 11 12 15 16
Input: 
List 1 : 4 <-> 7 <-> 8 <-> 10 <-> NULL 
List 2 : 4 <-> 19 <-> 20 <-> 23 <-> 27 <-> NULL 
List 3 : 3 <-> 9 <-> 12 <-> 20 <-> NULL 
List 4 : 1 <-> 19 <-> 22 <-> NULL 
List 5 : 7 <-> 16 <-> 20 <-> 21 <-> NULL 
Output : 
1 3 4 4 7 7 8 9 10 12 16 19 19 20 20 20 21 22 23 27 
 

 

Prerequisite: Reference-of-algorithm 
Approach: 
 

  1. First merge two doubly linked list in sorted order
  2. Then merge this list with another list in sorted order
  3. Do the same thing until all list are not merged
  4. Keep in mind that you have to merge two list at a time then merged list will be merged newly list

Algorithm: 
 

function merge(A, B) is     inputs A, B : list     returns list      C := new empty list     while A is not empty and B is not empty do         if head(A) < head(B) then             append head(A) to C             drop the head of A         else             append head(B) to C             drop the head of B      // By now, either A or B is empty      // It remains to empty the other input list     while A is not empty do         append head(A) to C         drop the head of A     while B is not empty do         append head(B) to C         drop the head of B      return C

Below is the implementation of the above approach: 
 

C++




// C++ program to merge K sorted doubly
// linked list in sorted order
#include <bits/stdc++.h>
using namespace std;
 
// A linked list node
struct Node {
    int data;
    Node* next;
    Node* prev;
};
 
// Given a reference (pointer to pointer) to the head
// Of a DLL and an int, appends a new node at the end
void append(struct Node** head_ref, int new_data)
{
    // Allocate node
    struct Node* new_node
        = (struct Node*)malloc(sizeof(struct Node));
 
    struct Node* last = *head_ref;
 
    // Put in the data
    new_node->data = new_data;
 
    // This new node is going to be the last
    // node, so make next of it as NULL
    new_node->next = NULL;
 
    // If the Linked List is empty, then make
    // the new node as head */
    if (*head_ref == NULL) {
        new_node->prev = NULL;
        *head_ref = new_node;
        return;
    }
 
    // Else traverse till the last node
    while (last->next != NULL)
        last = last->next;
 
    // Change the next of last node
    last->next = new_node;
 
    // Make last node as previous of new node
    new_node->prev = last;
 
    return;
}
 
// Function to print the list
void printList(Node* node)
{
    Node* last;
 
    // Run while loop unless node becomes null
    while (node != NULL) {
        cout << node->data << " ";
        last = node;
        node = node->next;
    }
}
 
// Function to merge two
// sorted doubly linked lists
Node* mergeList(Node* p, Node* q)
{
    Node* s = NULL;
 
    // If any of the list is empty
    if (p == NULL || q == NULL) {
        return (p == NULL ? q : p);
    }
 
    // Comparison the data of two linked list
    if (p->data < q->data) {
        p->prev = s;
        s = p;
        p = p->next;
    }
    else {
        q->prev = s;
        s = q;
        q = q->next;
    }
 
    // Store head pointer before merge the list
    Node* head = s;
    while (p != NULL && q != NULL) {
        if (p->data < q->data) {
 
            // Changing of pointer between
            // Two list for merging
            s->next = p;
            p->prev = s;
            s = s->next;
            p = p->next;
        }
        else {
 
            // Changing of pointer between
            // Two list for merging
            s->next = q;
            q->prev = s;
            s = s->next;
            q = q->next;
        }
    }
 
    // Condition to check if any anyone list not end
    if (p == NULL) {
        s->next = q;
        q->prev = s;
    }
    if (q == NULL) {
        s->next = p;
        p->prev = s;
    }
 
    // Return head pointer of merged list
    return head;
}
 
// Function to merge all sorted linked
// list in sorted order
Node* mergeAllList(Node* head[], int k)
{
    Node* finalList = NULL;
    for (int i = 0; i < k; i++) {
 
        // Function call to merge two sorted
        // doubly linked list at a time
        finalList = mergeList(finalList, head[i]);
    }
 
    // Return final sorted doubly linked list
    return finalList;
}
 
// Driver code
int main()
{
    int k = 3;
    Node* head[k];
 
    // Loop to initialize all the lists to empty
    for (int i = 0; i < k; i++) {
        head[i] = NULL;
    }
 
    // Create first doubly linked List
    // List1 -> 1 <=> 5 <=> 9
    append(&head[0], 1);
 
    append(&head[0], 5);
 
    append(&head[0], 9);
 
    // Create second doubly linked List
    // List2 -> 2 <=> 3 <=> 7 <=> 12
    append(&head[1], 2);
 
    append(&head[1], 3);
 
    append(&head[1], 7);
 
    append(&head[1], 12);
 
    // Create third doubly linked List
    // List3 -> 8 <=> 11 <=> 13 <=> 18
    append(&head[2], 8);
 
    append(&head[2], 11);
 
    append(&head[2], 13);
 
    append(&head[2], 18);
 
    // Function call to merge all sorted
    // doubly linked lists in sorted order
    Node* finalList = mergeAllList(head, k);
 
    // Print final sorted list
    printList(finalList);
 
    return 0;
}
 
 

Java




// Java program to merge K sorted doubly
// linked list in sorted order
class GFG
{
     
// A linked list node
static class Node
{
    int data;
    Node next;
    Node prev;
};
 
// Given a reference (pointer to pointer) to the head
// Of a DLL and an int, appends a new node at the end
static Node append(Node head_ref, int new_data)
{
    // Allocate node
    Node new_node = new Node();
 
    Node last = head_ref;
 
    // Put in the data
    new_node.data = new_data;
 
    // This new node is going to be the last
    // node, so make next of it as null
    new_node.next = null;
 
    // If the Linked List is empty, then make
    // the new node as head */
    if (head_ref == null)
    {
        new_node.prev = null;
        head_ref = new_node;
        return head_ref;
    }
 
    // Else traverse till the last node
    while (last.next != null)
        last = last.next;
 
    // Change the next of last node
    last.next = new_node;
 
    // Make last node as previous of new node
    new_node.prev = last;
 
    return head_ref;
}
 
// Function to print the list
static void printList(Node node)
{
    Node last;
 
    // Run while loop unless node becomes null
    while (node != null)
    {
        System.out.print( node.data + " ");
        last = node;
        node = node.next;
    }
}
 
// Function to merge two
// sorted doubly linked lists
static Node mergeList(Node p, Node q)
{
    Node s = null;
 
    // If any of the list is empty
    if (p == null || q == null)
    {
        return (p == null ? q : p);
    }
 
    // Comparison the data of two linked list
    if (p.data < q.data)
    {
        p.prev = s;
        s = p;
        p = p.next;
    }
    else
    {
        q.prev = s;
        s = q;
        q = q.next;
    }
 
    // Store head pointer before merge the list
    Node head = s;
    while (p != null && q != null)
    {
        if (p.data < q.data)
        {
 
            // Changing of pointer between
            // Two list for merging
            s.next = p;
            p.prev = s;
            s = s.next;
            p = p.next;
        }
        else
        {
 
            // Changing of pointer between
            // Two list for merging
            s.next = q;
            q.prev = s;
            s = s.next;
            q = q.next;
        }
    }
 
    // Condition to check if any anyone list not end
    if (p == null)
    {
        s.next = q;
        q.prev = s;
    }
    if (q == null)
    {
        s.next = p;
        p.prev = s;
    }
 
    // Return head pointer of merged list
    return head;
}
 
// Function to merge all sorted linked
// list in sorted order
static Node mergeAllList(Node head[], int k)
{
    Node finalList = null;
    for (int i = 0; i < k; i++)
    {
 
        // Function call to merge two sorted
        // doubly linked list at a time
        finalList = mergeList(finalList, head[i]);
    }
 
    // Return final sorted doubly linked list
    return finalList;
}
 
// Driver code
public static void main(String args[])
{
    int k = 3;
    Node head[] = new Node[k];
 
    // Loop to initialize all the lists to empty
    for (int i = 0; i < k; i++)
    {
        head[i] = null;
    }
 
    // Create first doubly linked List
    // List1 . 1 <=> 5 <=> 9
    head[0] = append(head[0], 1);
 
    head[0] = append(head[0], 5);
 
    head[0] = append(head[0], 9);
 
    // Create second doubly linked List
    // List2 . 2 <=> 3 <=> 7 <=> 12
    head[1] = append(head[1], 2);
 
    head[1] = append(head[1], 3);
  
    head[1] = append(head[1], 7);
 
    head[1] = append(head[1], 12);
 
    // Create third doubly linked List
    // List3 . 8 <=> 11 <=> 13 <=> 18
    head[2] = append(head[2], 8);
 
    head[2] = append(head[2], 11);
 
    head[2] = append(head[2], 13);
 
    head[2] = append(head[2], 18);
 
    // Function call to merge all sorted
    // doubly linked lists in sorted order
    Node finalList = mergeAllList(head, k);
 
    // Print final sorted list
    printList(finalList);
}
}
 
// This code is contributed by Arnab Kundu
 
 

Python




# Python program to merge K sorted doubly
# linked list in sorted order
 
# A linked list node
class Node:
    def __init__(self, new_data):
        self.data = new_data
        self.next = None
        self.prev = None
 
# Given a reference (pointer to pointer) to the head
# Of a DLL and an int, appends a new node at the end
def append(head_ref, new_data):
 
    # Allocate node
    new_node = Node(0)
 
    last = head_ref
 
    # Put in the data
    new_node.data = new_data
 
    # This new node is going to be the last
    # node, so make next of it as None
    new_node.next = None
 
    # If the Linked List is empty, then make
    # the new node as head */
    if (head_ref == None) :
        new_node.prev = None
        head_ref = new_node
        return head_ref
     
    # Else traverse till the last node
    while (last.next != None):
        last = last.next
 
    # Change the next of last node
    last.next = new_node
 
    # Make last node as previous of new node
    new_node.prev = last
 
    return head_ref
 
# Function to print the list
def printList(node):
 
    last = None
 
    # Run while loop unless node becomes None
    while (node != None) :
     
        print( node.data, end = " ")
        last = node
        node = node.next
     
# Function to merge two
# sorted doubly linked lists
def mergeList(p, q):
 
    s = None
 
    # If any of the list is empty
    if (p == None or q == None) :
     
        if (p == None ):
            return q
        else:
            return p
     
    # Comparison the data of two linked list
    if (p.data < q.data):
        p.prev = s
        s = p
        p = p.next
     
    else:
        q.prev = s
        s = q
        q = q.next
     
    # Store head pointer before merge the list
    head = s
    while (p != None and q != None) :
     
        if (p.data < q.data) :
         
            # Changing of pointer between
            # Two list for merging
            s.next = p
            p.prev = s
            s = s.next
            p = p.next
         
        else:
            # Changing of pointer between
            # Two list for merging
            s.next = q
            q.prev = s
            s = s.next
            q = q.next
         
    # Condition to check if any anyone list not end
    if (p == None):
        s.next = q
        q.prev = s
     
    if (q == None):
        s.next = p
        p.prev = s
 
    # Return head pointer of merged list
    return head
 
# Function to merge all sorted linked
# list in sorted order
def mergeAllList(head,k):
 
    finalList = None
    i = 0
    while ( i < k ) :
     
        # Function call to merge two sorted
        # doubly linked list at a time
        finalList = mergeList(finalList, head[i])
        i = i + 1
     
    # Return final sorted doubly linked list
    return finalList
 
# Driver code
 
k = 3
head = [0] * k
i = 0
 
# Loop to initialize all the lists to empty
while ( i < k ) :
     
    head[i] = None
    i = i + 1
     
# Create first doubly linked List
# List1 . 1 <=> 5 <=> 9
head[0] = append(head[0], 1)
head[0] = append(head[0], 5)
head[0] = append(head[0], 9)
 
# Create second doubly linked List
# List2 . 2 <=> 3 <=> 7 <=> 12
head[1] = append(head[1], 2)
head[1] = append(head[1], 3)
head[1] = append(head[1], 7)
head[1] = append(head[1], 12)
 
# Create third doubly linked List
# List3 . 8 <=> 11 <=> 13 <=> 18
head[2] = append(head[2], 8)
head[2] = append(head[2], 11)
head[2] = append(head[2], 13)
head[2] = append(head[2], 18)
 
# Function call to merge all sorted
# doubly linked lists in sorted order
finalList = mergeAllList(head, k)
 
# Print final sorted list
printList(finalList)
 
# This code is contributed by Arnab Kundu
 
 

C#




// C# program to merge K sorted doubly
// linked list in sorted order
using System;
 
class GFG
{
         
    // A linked list node
    public class Node
    {
        public int data;
        public Node next;
        public Node prev;
    };
     
    // Given a reference (pointer to pointer)
    // to the head of a DLL and an int,
    // appends a new node at the end
    static Node append(Node head_ref,
                       int new_data)
    {
        // Allocate node
        Node new_node = new Node();
     
        Node last = head_ref;
     
        // Put in the data
        new_node.data = new_data;
     
        // This new node is going to be the last
        // node, so make next of it as null
        new_node.next = null;
     
        // If the Linked List is empty,
        // then make the new node as head */
        if (head_ref == null)
        {
            new_node.prev = null;
            head_ref = new_node;
            return head_ref;
        }
     
        // Else traverse till the last node
        while (last.next != null)
            last = last.next;
     
        // Change the next of last node
        last.next = new_node;
     
        // Make last node as previous of new node
        new_node.prev = last;
     
        return head_ref;
    }
     
    // Function to print the list
    static void printList(Node node)
    {
        Node last;
     
        // Run while loop unless node becomes null
        while (node != null)
        {
            Console.Write(node.data + " ");
            last = node;
            node = node.next;
        }
    }
     
    // Function to merge two
    // sorted doubly linked lists
    static Node mergeList(Node p, Node q)
    {
        Node s = null;
     
        // If any of the list is empty
        if (p == null || q == null)
        {
            return (p == null ? q : p);
        }
     
        // Comparison the data of two linked list
        if (p.data < q.data)
        {
            p.prev = s;
            s = p;
            p = p.next;
        }
        else
        {
            q.prev = s;
            s = q;
            q = q.next;
        }
     
        // Store head pointer before merge the list
        Node head = s;
        while (p != null && q != null)
        {
            if (p.data < q.data)
            {
     
                // Changing of pointer between
                // Two list for merging
                s.next = p;
                p.prev = s;
                s = s.next;
                p = p.next;
            }
            else
            {
     
                // Changing of pointer between
                // Two list for merging
                s.next = q;
                q.prev = s;
                s = s.next;
                q = q.next;
            }
        }
     
        // Condition to check if
        // any anyone list not end
        if (p == null)
        {
            s.next = q;
            q.prev = s;
        }
        if (q == null)
        {
            s.next = p;
            p.prev = s;
        }
     
        // Return head pointer of merged list
        return head;
    }
     
    // Function to merge all sorted linked
    // list in sorted order
    static Node mergeAllList(Node []head, int k)
    {
        Node finalList = null;
        for (int i = 0; i < k; i++)
        {
     
            // Function call to merge two sorted
            // doubly linked list at a time
            finalList = mergeList(finalList,
                                   head[i]);
        }
     
        // Return final sorted doubly linked list
        return finalList;
    }
     
    // Driver code
    public static void Main()
    {
        int k = 3;
        Node []head = new Node[k];
     
        // Loop to initialize all the lists to empty
        for (int i = 0; i < k; i++)
        {
            head[i] = null;
        }
     
        // Create first doubly linked List
        // List1 . 1 <=> 5 <=> 9
        head[0] = append(head[0], 1);
        head[0] = append(head[0], 5);
        head[0] = append(head[0], 9);
     
        // Create second doubly linked List
        // List2 . 2 <=> 3 <=> 7 <=> 12
        head[1] = append(head[1], 2);
        head[1] = append(head[1], 3);
        head[1] = append(head[1], 7);
        head[1] = append(head[1], 12);
     
        // Create third doubly linked List
        // List3 . 8 <=> 11 <=> 13 <=> 18
        head[2] = append(head[2], 8);
        head[2] = append(head[2], 11);
        head[2] = append(head[2], 13);
        head[2] = append(head[2], 18);
     
        // Function call to merge all sorted
        // doubly linked lists in sorted order
        Node finalList = mergeAllList(head, k);
     
        // Print final sorted list
        printList(finalList);
    }
}
 
// This code is contributed by AnkitRai01
 
 

Javascript




<script>
// javascript program to merge K sorted doubly
// linked list in sorted order    // A linked list node
     class Node {
     constructor(){
        this.data = 0;
        this.next = null;
        this.prev = null;
        }
    }
 
    // Given a reference (pointer to pointer) to the head
    // Of a DLL and an int, appends a new node at the end
    function append( head_ref , new_data)
    {
        // Allocate node
         new_node = new Node();
 
         last = head_ref;
 
        // Put in the data
        new_node.data = new_data;
 
        // This new node is going to be the last
        // node, so make next of it as null
        new_node.next = null;
 
        // If the Linked List is empty, then make
        // the new node as head */
        if (head_ref == null) {
            new_node.prev = null;
            head_ref = new_node;
            return head_ref;
        }
 
        // Else traverse till the last node
        while (last.next != null)
            last = last.next;
 
        // Change the next of last node
        last.next = new_node;
 
        // Make last node as previous of new node
        new_node.prev = last;
 
        return head_ref;
    }
 
    // Function to print the list
    function printList( node) {
         last;
 
        // Run while loop unless node becomes null
        while (node != null) {
            document.write(node.data + " ");
            last = node;
            node = node.next;
        }
    }
 
    // Function to merge two
    // sorted doubly linked lists
    function mergeList( p,  q) {
         s = null;
 
        // If any of the list is empty
        if (p == null || q == null) {
            return (p == null ? q : p);
        }
 
        // Comparison the data of two linked list
        if (p.data < q.data) {
            p.prev = s;
            s = p;
            p = p.next;
        } else {
            q.prev = s;
            s = q;
            q = q.next;
        }
 
        // Store head pointer before merge the list
         head = s;
        while (p != null && q != null) {
            if (p.data < q.data) {
 
                // Changing of pointer between
                // Two list for merging
                s.next = p;
                p.prev = s;
                s = s.next;
                p = p.next;
            } else {
 
                // Changing of pointer between
                // Two list for merging
                s.next = q;
                q.prev = s;
                s = s.next;
                q = q.next;
            }
        }
 
        // Condition to check if any anyone list not end
        if (p == null) {
            s.next = q;
            q.prev = s;
        }
        if (q == null) {
            s.next = p;
            p.prev = s;
        }
 
        // Return head pointer of merged list
        return head;
    }
 
    // Function to merge all sorted linked
    // list in sorted order
    function mergeAllList( head , k) {
         finalList = null;
        for (i = 0; i < k; i++) {
 
            // Function call to merge two sorted
            // doubly linked list at a time
            finalList = mergeList(finalList, head[i]);
        }
 
        // Return final sorted doubly linked list
        return finalList;
    }
 
    // Driver code
     
        var k = 3;
         head = Array(k).fill(null);
       
        // Loop to initialize all the lists to empty
        for (i = 0; i < k; i++) {
            head[i] = null;
        }
 
        // Create first doubly linked List
        // List1 . 1 <=> 5 <=> 9
        head[0] = append(head[0], 1);
 
        head[0] = append(head[0], 5);
 
        head[0] = append(head[0], 9);
 
        // Create second doubly linked List
        // List2 . 2 <=> 3 <=> 7 <=> 12
        head[1] = append(head[1], 2);
 
        head[1] = append(head[1], 3);
 
        head[1] = append(head[1], 7);
 
        head[1] = append(head[1], 12);
 
        // Create third doubly linked List
        // List3 . 8 <=> 11 <=> 13 <=> 18
        head[2] = append(head[2], 8);
 
        head[2] = append(head[2], 11);
 
        head[2] = append(head[2], 13);
 
        head[2] = append(head[2], 18);
 
        // Function call to merge all sorted
        // doubly linked lists in sorted order
         finalList = mergeAllList(head, k);
 
        // Print final sorted list
        printList(finalList);
 
// This code is contributed by umadevi9616
</script>
 
 
Output: 
1 2 3 5 7 8 9 11 12 13 18

 

Time Complexity: O(N*k)
Auxiliary Space: O(1)



Next Article
Merge a linked list into another linked list at alternate positions

M

MohammadMudassir
Improve
Article Tags :
  • DSA
  • Linked List
  • Sorting
  • doubly linked list
Practice Tags :
  • Linked List
  • Sorting

Similar Reads

  • Merge Sort - Data Structure and Algorithms Tutorials
    Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. How do
    14 min read
  • Merge sort in different languages

    • C Program for Merge Sort
      Merge Sort is a comparison-based sorting algorithm that works by dividing the input array into two halves, then calling itself for these two halves, and finally it merges the two sorted halves. In this article, we will learn how to implement merge sort in C language. What is Merge Sort Algorithm?Mer
      3 min read

    • C++ Program For Merge Sort
      Merge Sort is a comparison-based sorting algorithm that uses divide and conquer paradigm to sort the given dataset. It divides the dataset into two halves, calls itself for these two halves, and then it merges the two sorted halves. In this article, we will learn how to implement merge sort in a C++
      4 min read

    • Java Program for Merge Sort
      Merge Sort is a divide-and-conquer algorithm. It divides the input array into two halves, calls itself the two halves, and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is a key process that assumes that arr[l..m] and arr[m+1..r] are
      3 min read

    • Merge Sort in Python
      Merge Sort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the two halves and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is key process that assumes that arr[l..m] and arr[m+1..r] are sorte
      4 min read

    • Merge Sort using Multi-threading
      Merge Sort is a popular sorting technique which divides an array or list into two halves and then start merging them when sufficient depth is reached. Time complexity of merge sort is O(nlogn).Threads are lightweight processes and threads shares with other threads their code section, data section an
      14 min read

    Variations of Merge Sort

    • 3-way Merge Sort
      Merge Sort is a divide-and-conquer algorithm that recursively splits an array into two halves, sorts each half, and then merges them. A variation of this is 3-way Merge Sort, where instead of splitting the array into two parts, we divide it into three equal parts. In traditional Merge Sort, the arra
      14 min read

    • Iterative Merge Sort
      Given an array of size n, the task is to sort the given array using iterative merge sort. Examples: Input: arr[] = [4, 1, 3, 9, 7]Output: [1, 3, 4, 7, 9]Explanation: The output array is sorted. Input: arr[] = [1, 3 , 2]Output: [1, 2, 3]Explanation: The output array is sorted. You can refer to Merge
      9 min read

    • In-Place Merge Sort
      Implement Merge Sort i.e. standard implementation keeping the sorting algorithm as in-place. In-place means it does not occupy extra memory for merge operation as in the standard case. Examples: Input: arr[] = {2, 3, 4, 1} Output: 1 2 3 4 Input: arr[] = {56, 2, 45} Output: 2 45 56 Approach 1: Mainta
      15+ min read

    • In-Place Merge Sort | Set 2
      Given an array A[] of size N, the task is to sort the array in increasing order using In-Place Merge Sort. Examples: Input: A = {5, 6, 3, 2, 1, 6, 7}Output: {1, 2, 3, 5, 6, 6, 7} Input: A = {2, 3, 4, 1}Output: {1, 2, 3, 4} Approach: The idea is to use the inplace_merge() function to merge the sorted
      7 min read

    • Merge Sort with O(1) extra space merge and O(n log n) time [Unsigned Integers Only]
      We have discussed Merge sort. How to modify the algorithm so that merge works in O(1) extra space and algorithm still works in O(n Log n) time. We may assume that the input values are integers only. Examples: Input : 5 4 3 2 1 Output : 1 2 3 4 5 Input : 999 612 589 856 56 945 243 Output : 56 243 589
      10 min read

    Merge Sort in Linked List

    • Merge Sort for Linked Lists
      Given a singly linked list, The task is to sort the linked list in non-decreasing order using merge sort. Examples: Input: 40 -> 20 -> 60 -> 10 -> 50 -> 30 -> NULLOutput: 10 -> 20 -> 30 -> 40 -> 50 -> 60 -> NULL Input: 9 -> 5 -> 2 -> 8 -> NULLOutput: 2
      12 min read

    • Merge Sort for Doubly Linked List
      Given a doubly linked list, The task is to sort the doubly linked list in non-decreasing order using merge sort.Examples: Input: 10 <-> 8 <-> 4 <-> 2Output: 2 <-> 4 <-> 8 <-> 10Input: 5 <-> 3 <-> 2Output: 2 <-> 3 <-> 5 Note: Merge sort for
      13 min read

    • Iterative Merge Sort for Linked List
      Given a singly linked list of integers, the task is to sort it using iterative merge sort. Examples: Input: 40 -> 20 -> 60 -> 10 -> 50 -> 30 -> NULLOutput: 10 -> 20 -> 30 -> 40 -> 50 -> 60 -> NULL Input: 9 -> 5 -> 2 -> 8 -> NULLOutput: 2 -> 5 ->
      14 min read

    • Merge two sorted lists (in-place)
      Given two sorted linked lists consisting of n and m nodes respectively. The task is to merge both of the lists and return the head of the merged list. Example: Input: Output: Input: Output: Approach: The idea is to iteratively merge two sorted linked lists using a dummy node to simplify the process.
      9 min read

    • Merge K sorted Doubly Linked List in Sorted Order
      Given K sorted doubly linked list. The task is to merge all sorted doubly linked list in single sorted doubly linked list means final list must be sorted.Examples: Input: List 1 : 2 <-> 7 <-> 8 <-> 12 <-> 15 <-> NULL List 2 : 4 <-> 9 <-> 10 <-> NULL Li
      15+ min read

    • Merge a linked list into another linked list at alternate positions
      Given two singly linked lists, The task is to insert nodes of the second list into the first list at alternate positions of the first list and leave the remaining nodes of the second list if it is longer. Example: Input: head1: 1->2->3 , head2: 4->5->6->7->8Output: head1: 1->4-
      8 min read

  • Find a permutation that causes worst case of Merge Sort
    Given a set of elements, find which permutation of these elements would result in worst case of Merge Sort.Asymptotically, merge sort always takes O(n Log n) time, but the cases that require more comparisons generally take more time in practice. We basically need to find a permutation of input eleme
    12 min read
  • How to make Mergesort to perform O(n) comparisons in best case?
    As we know, Mergesort is a divide and conquer algorithm that splits the array to halves recursively until it reaches an array of the size of 1, and after that it merges sorted subarrays until the original array is fully sorted. Typical implementation of merge sort works in O(n Log n) time in all thr
    3 min read
  • Concurrent Merge Sort in Shared Memory
    Given a number 'n' and a n numbers, sort the numbers using Concurrent Merge Sort. (Hint: Try to use shmget, shmat system calls).Part1: The algorithm (HOW?) Recursively make two child processes, one for the left half, one of the right half. If the number of elements in the array for a process is less
    10 min read
  • Visualization of Merge Sort

    • Sorting Algorithm Visualization : Merge Sort
      The human brain can easily process visuals instead of long codes to understand the algorithms. In this article, a program that program visualizes the Merge sort Algorithm has been implemented. The GUI(Graphical User Interface) is implemented using pygame package in python. Approach: An array of rand
      3 min read

    • Merge Sort Visualization in JavaScript
      GUI(Graphical User Interface) helps users with better understanding programs. In this article, we will visualize Merge Sort using JavaScript. We will see how the arrays are divided and merged after sorting to get the final sorted array.  Refer: Merge SortCanvas in HTMLAsynchronous Function in JavaSc
      4 min read

    • Visualize Merge sort Using Tkinter in Python
      Prerequisites: Python GUI – tkinter In this article, we will create a GUI application that will help us to visualize the algorithm of merge sort using Tkinter in Python. Merge Sort is a popular sorting algorithm. It has a time complexity of N(logN) which is faster than other sorting algorithms like
      5 min read

    • Visualization of Merge sort using Matplotlib
      Prerequisites: Introduction to Matplotlib, Merge Sort Visualizing algorithms makes it easier to understand them by analyzing and comparing the number of operations that took place to compare and swap the elements. For this we will use matplotlib, to plot bar graphs to represent the elements of the a
      3 min read

    • 3D Visualisation of Merge Sort using Matplotlib
      Visualizing algorithms makes it easier to understand them by analyzing and comparing the number of operations that took place to compare and swap the elements. 3D visualization of algorithms is less common, for this we will use matplotlib to plot bar graphs and animate them to represent the elements
      3 min read

    Some problems on Merge Sort

    • Count Inversions of an Array
      Given an integer array arr[] of size n, find the inversion count in the array. Two array elements arr[i] and arr[j] form an inversion if arr[i] > arr[j] and i < j. Note: Inversion Count for an array indicates that how far (or close) the array is from being sorted. If the array is already sorte
      15+ min read

    • Count of smaller elements on right side of each element in an Array using Merge sort
      Given an array arr[] of N integers, the task is to count the number of smaller elements on the right side for each of the element in the array Examples: Input: arr[] = {6, 3, 7, 2} Output: 2, 1, 1, 0 Explanation: Smaller elements after 6 = 2 [3, 2] Smaller elements after 3 = 1 [2] Smaller elements a
      12 min read

    • Sort a nearly sorted (or K sorted) array
      Given an array arr[] and a number k . The array is sorted in a way that every element is at max k distance away from it sorted position. It means if we completely sort the array, then the index of the element can go from i - k to i + k where i is index in the given array. Our task is to completely s
      6 min read

    • Median of two Sorted Arrays of Different Sizes
      Given two sorted arrays, a[] and b[], the task is to find the median of these sorted arrays. Assume that the two sorted arrays are merged and then median is selected from the combined array. This is an extension of Median of two sorted arrays of equal size problem. Here we handle arrays of unequal s
      15+ min read

    • Merge k Sorted Arrays
      Given K sorted arrays, merge them and print the sorted output. Examples: Input: K = 3, arr = { {1, 3, 5, 7}, {2, 4, 6, 8}, {0, 9, 10, 11}}Output: 0 1 2 3 4 5 6 7 8 9 10 11 Input: k = 4, arr = { {1}, {2, 4}, {3, 7, 9, 11}, {13} }Output: 1 2 3 4 7 9 11 13 Table of Content Naive - Concatenate all and S
      15+ min read

    • Merge K sorted arrays of different sizes | ( Divide and Conquer Approach )
      Given k sorted arrays of different length, merge them into a single array such that the merged array is also sorted.Examples: Input : {{3, 13}, {8, 10, 11} {9, 15}} Output : {3, 8, 9, 10, 11, 13, 15} Input : {{1, 5}, {2, 3, 4}} Output : {1, 2, 3, 4, 5} Let S be the total number of elements in all th
      8 min read

    • Merge K sorted linked lists
      Given k sorted linked lists of different sizes, the task is to merge them all maintaining their sorted order. Examples: Input: Output: Merged lists in a sorted order where every element is greater than the previous element. Input: Output: Merged lists in a sorted order where every element is greater
      15+ min read

    • Union and Intersection of two Linked List using Merge Sort
      Given two singly Linked Lists, create union and intersection lists that contain the union and intersection of the elements present in the given lists. Each of the two lists contains distinct node values. Note: The order of elements in output lists doesn't matter. Examples: Input: head1: 10 -> 15
      15+ min read

    • Sorting by combining Insertion Sort and Merge Sort algorithms
      Insertion sort: The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part.Advantages: Following are the advantages of insertion sort: If the size of the list to be sorted is small, insertion sort ru
      2 min read

    • Find array with k number of merge sort calls
      Given two numbers n and k, find an array containing values in [1, n] and requires exactly k calls of recursive merge sort function. Examples: Input : n = 3 k = 3 Output : a[] = {2, 1, 3} Explanation: Here, a[] = {2, 1, 3} First of all, mergesort(0, 3) will be called, which then sets mid = 1 and call
      6 min read

    • Difference of two Linked Lists using Merge sort
      Given two Linked List, the task is to create a Linked List to store the difference of Linked List 1 with Linked List 2, i.e. the elements present in List 1 but not in List 2.Examples: Input: List1: 10 -> 15 -> 4 ->20, List2: 8 -> 4 -> 2 -> 10 Output: 15 -> 20 Explanation: In the
      14 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences