Find Median from Running Data Stream
Last Updated : 17 Feb, 2025
Given a data stream arr[] where integers are read sequentially, the task is to determine the median of the elements encountered so far after each new integer is read.
There are two cases for median on the basis of data set size.
- If the data set has an odd number then the middle one will be consider as median.
- If the data set has an even number then there is no distinct middle value and the median will be the arithmetic mean of the two middle values.
Example:
Input: arr[] = [5, 15, 1, 3, 2, 8]
Output: [5.00, 10.00, 5.00, 4.00, 3.00, 4.00]
Explanation:
After reading 1st element of stream – 5 -> median = 5
After reading 2nd element of stream – 5, 15 -> median = (5+15)/2 = 10
After reading 3rd element of stream – 5, 15, 1 -> median = 5
After reading 4th element of stream – 5, 15, 1, 3 -> median = (3+5)/2 = 4
After reading 5th element of stream – 5, 15, 1, 3, 2 -> median = 3
After reading 6th element of stream – 5, 15, 1, 3, 2, 8 -> median = (3+5)/2 = 4
Input: arr[] = [2, 2, 2, 2]
Output: [2.00, 2.00, 2.00, 2.00]
Explanation:
After reading 1st element of stream – 2 -> median = 2
After reading 2nd element of stream – 2, 2 -> median = (2+2)/2 = 2
After reading 3rd element of stream – 2, 2, 2 -> median = 2
After reading 4th element of stream – 2, 2, 2, 2 -> median = (2+2)/2 = 2
[Naive Approach] Using Insertion Sort
If we can sort the data as it appears, we can easily locate the median (center) element. Insertion Sort is one such online algorithm that sorts the data appeared so far. At any instance of sorting, say after sorting i-th element, the first i elements of the array are sorted. The insertion sort doesn’t depend on future data to sort data input till that point. In other words, insertion sort considers data sorted so far while inserting the next element. This is the key part of insertion sort that makes it an onlinealgorithm.
C++ // C++ program to find Median from Running Data Stream // Using Insertion Sort #include <iostream> #include <vector> #include <iomanip> using namespace std; // Function to print median of stream of integers vector<double> getMedian(vector<int> &arr) { vector<double> res; res.push_back(arr[0]); for (int i = 1; i < arr.size(); i++) { int j = i - 1; int num = arr[i]; // shift elements to right to create space to insert // the current element at its correct position while (j >= 0 && arr[j] > num) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = num; int len = i + 1; double median; // If odd number of integers are read from stream // then middle element in sorted order is median // else average of middle elements is median if (len % 2 != 0) { median = arr[len / 2]; } else { median = (double)(arr[(len / 2) - 1] + arr[len / 2]) / 2; } res.push_back(median); } return res; } int main() { vector<int> arr = {5, 15, 1, 3, 2, 8}; vector<double> res = getMedian(arr); cout << fixed << setprecision(2); for (double median: res) cout << median << " "; return 0; }
Java // Java program to find Median from Running Data Stream // Using Insertion Sort import java.util.ArrayList; import java.util.Arrays; class GfG { // Function to print median of stream of integers static ArrayList<Double> getMedian(int[] arr) { ArrayList<Double> res = new ArrayList<>(); res.add((double) arr[0]); for (int i = 1; i < arr.length; i++) { int j = i - 1; int num = arr[i]; // shift elements to right to create space to insert // the current element at its correct position while (j >= 0 && arr[j] > num) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = num; int len = i + 1; double median; // If odd number of integers are read from stream // then middle element in sorted order is median // else average of middle elements is median if (len % 2 != 0) { median = arr[len / 2]; } else { median = (arr[(len / 2) - 1] + arr[len / 2]) / 2.0; } res.add(median); } return res; } public static void main(String[] args) { int[] arr = {5, 15, 1, 3, 2, 8}; ArrayList<Double> res = getMedian(arr); for (int i = 0; i < res.size(); i++) { System.out.printf("%.2f ", res.get(i)); } } }
Python # Python program to find Median from Running Data Stream # Using Insertion Sort def getMedian(arr): res = [] res.append(float(arr[0])) for i in range(1, len(arr)): j = i - 1 num = arr[i] # shift elements to right to create space to insert # the current element at its correct position while j >= 0 and arr[j] > num: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = num length = i + 1 # If odd number of integers are read from stream # then middle element in sorted order is median # else average of middle elements is median if length % 2 != 0: median = arr[length // 2] else: median = (arr[(length // 2) - 1] + arr[length // 2]) / 2.0 res.append(median) return res if __name__ == '__main__': arr = [5, 15, 1, 3, 2, 8] res = getMedian(arr) print(" ".join(f"{median:.2f}" for median in res))
C# // C# program to find Median from Running Data Stream // Using Insertion Sort using System; using System.Collections.Generic; class GfG { // Function to print median of stream of integers static List<double> getMedian(int[] arr) { List<double> res = new List<double>(); res.Add(arr[0]); for (int i = 1; i < arr.Length; i++) { int j = i - 1; int num = arr[i]; // shift elements to right to create space to insert // the current element at its correct position while (j >= 0 && arr[j] > num) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = num; int len = i + 1; double median; // If odd number of integers are read from stream // then middle element in sorted order is median // else average of middle elements is median if (len % 2 != 0) { median = arr[len / 2]; } else { median = (arr[(len / 2) - 1] + arr[len / 2]) / 2.0; } res.Add(median); } return res; } static void Main() { int[] arr = { 5, 15, 1, 3, 2, 8 }; List<double> res = getMedian(arr); for (int i = 0; i < res.Count; i++) Console.Write(res[i].ToString("0.00") + " "); } }
JavaScript // JavaScript program to find Median from Running Data Stream // Using Insertion Sort function getMedian(arr) { let res = []; res.push(arr[0]); for (let i = 1; i < arr.length; i++) { let j = i - 1; let num = arr[i]; // shift elements to right to create space to insert // the current element at its correct position while (j >= 0 && arr[j] > num) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = num; let len = i + 1; let median; // If odd number of integers are read from stream // then middle element in sorted order is median // else average of middle elements is median if (len % 2 !== 0) { median = arr[Math.floor(len / 2)]; } else { median = (arr[len / 2 - 1] + arr[len / 2]) / 2.0; } res.push(median); } return res; } // Driver Code let arr = [5, 15, 1, 3, 2, 8]; let res = getMedian(arr); console.log(res.map(median => median.toFixed(2)).join(" "));
Output5.00 10.00 5.00 4.00 3.00 4.00
Time Complexity: O(n2), since insertion sort takes O(n2) time to sort n elements. Perhaps we can use binary search on insertion sort to find the location of the next element in O(log n) time. Yet, we can’t do data movement in O(log n) time. No matter how efficient the implementation is, it takes polynomial time in case of insertion sort.
Auxiliary Space: O(1)
[Expected Approach] Using Heaps
The median of an array occurs at the center of sorted array, so the idea is to store the current elements in two nearly equal parts. A max heap (left half) stores the smaller elements, ensuring the largest among them is at the top, while a min heap (right half) stores the larger elements, keeping the smallest at the top.
For each new element:
- It is first added to the max heap.
- The max heap’s top element is moved to the min heap to maintain order.
- If the min heap has more elements than the max heap, its top element is moved back to ensure balance.
This keeps both halves nearly equal in size, differing by at most one element. If the heaps are balanced, the median is the average of their root values; otherwise, it is the root of the heap with more elements.
C++ // C++ program to find Median from Running Data Stream // Using Heaps #include <iostream> #include <vector> #include <queue> #include <iomanip> using namespace std; // Function to find the median of a stream of data vector<double> getMedian(vector<int> &arr) { // Max heap to store the smaller half of numbers priority_queue<int> leftMaxHeap; // Min heap to store the greater half of numbers priority_queue<int, vector<int>, greater<int>> rightMinHeap; vector<double> res; for (int i = 0; i < arr.size(); i++) { // Insert new element into max heap leftMaxHeap.push(arr[i]); // Move the top of max heap to min heap to maintain order int temp = leftMaxHeap.top(); leftMaxHeap.pop(); rightMinHeap.push(temp); // Balance heaps if min heap has more elements if (rightMinHeap.size() > leftMaxHeap.size()) { temp = rightMinHeap.top(); rightMinHeap.pop(); leftMaxHeap.push(temp); } // Compute median based on heap sizes double median; if (leftMaxHeap.size() != rightMinHeap.size()) median = leftMaxHeap.top(); else median = (double)(leftMaxHeap.top() + rightMinHeap.top()) / 2; res.push_back(median); } return res; } int main() { vector<int> arr = {5, 15, 1, 3, 2, 8}; vector<double> res = getMedian(arr); cout << fixed << setprecision(2); for (double median: res) cout << median << " "; return 0; }
Java // Java program to find Median from Running Data Stream // Using Heaps import java.util.PriorityQueue; import java.util.ArrayList; class GfG { // Function to find the median of a stream of data static ArrayList<Double> getMedian(int[] arr) { // Max heap to store the smaller half of numbers PriorityQueue<Integer> leftMaxHeap = new PriorityQueue<>((a, b) -> b - a); // Min heap to store the greater half of numbers PriorityQueue<Integer> rightMinHeap = new PriorityQueue<>(); ArrayList<Double> res = new ArrayList<>(); for (int i = 0; i < arr.length; i++) { // Insert new element into max heap leftMaxHeap.add(arr[i]); // Move the top of max heap to min heap to maintain order int temp = leftMaxHeap.poll(); rightMinHeap.add(temp); // Balance heaps if min heap has more elements if (rightMinHeap.size() > leftMaxHeap.size()) { temp = rightMinHeap.poll(); leftMaxHeap.add(temp); } // Compute median based on heap sizes double median; if (leftMaxHeap.size() != rightMinHeap.size()) median = leftMaxHeap.peek(); else median = (leftMaxHeap.peek() + rightMinHeap.peek()) / 2.0; res.add(median); } return res; } public static void main(String[] args) { int[] arr = {5, 15, 1, 3, 2, 8}; ArrayList<Double> res = getMedian(arr); System.out.printf("%.2f", res.get(0)); for (int i = 1; i < res.size(); i++) { System.out.printf(" %.2f", res.get(i)); } } }
Python # Python program to find Median from Running Data Stream # Using Heaps import heapq # Function to find the median of a stream of data def getMedian(arr): # Max heap to store the smaller half of numbers leftMaxHeap = [] # Min heap to store the greater half of numbers rightMinHeap = [] res = [] for num in arr: # Insert new element into max heap (negating for max behavior) heapq.heappush(leftMaxHeap, -num) # Move the top of max heap to min heap to maintain order temp = -heapq.heappop(leftMaxHeap) heapq.heappush(rightMinHeap, temp) # Balance heaps if min heap has more elements if len(rightMinHeap) > len(leftMaxHeap): temp = heapq.heappop(rightMinHeap) heapq.heappush(leftMaxHeap, -temp) # Compute median based on heap sizes if len(leftMaxHeap) != len(rightMinHeap): median = -leftMaxHeap[0] else: median = (-leftMaxHeap[0] + rightMinHeap[0]) / 2.0 res.append(median) return res if __name__ == "__main__": arr = [5, 15, 1, 3, 2, 8] res = getMedian(arr) print(" ".join(f"{median:.2f}" for median in res))
C# // C# program to find Median from Running Data Stream // Using Heaps using System; using System.Collections.Generic; using System.Linq; class GfG { static void insert(SortedDictionary<int, int> heap, int num, ref int size) { if (heap.ContainsKey(num)) heap[num]++; else heap[num] = 1; size++; } static void remove(SortedDictionary<int, int> heap, int num, ref int size) { if (heap[num] == 1) heap.Remove(num); else heap[num]--; size--; } static int getMax(SortedDictionary<int, int> heap) => heap.First().Key; static int getMin(SortedDictionary<int, int> heap) => heap.First().Key; static List<double> getMedian(int[] arr) { // Max heap for the smaller half (left side) SortedDictionary<int, int> leftMaxHeap = new SortedDictionary <int, int>(Comparer<int>.Create((a, b) => b.CompareTo(a))); int leftSize = 0; // Min heap for the greater half (right side) SortedDictionary<int, int> rightMinHeap = new SortedDictionary <int, int>(); int rightSize = 0; List<double> res = new List<double>(); foreach (int num in arr) { // Insert into max heap insert(leftMaxHeap, num, ref leftSize); // Move top from max heap to min heap int temp = getMax(leftMaxHeap); remove(leftMaxHeap, temp, ref leftSize); insert(rightMinHeap, temp, ref rightSize); // Balance the heaps if (rightSize > leftSize) { temp = getMin(rightMinHeap); remove(rightMinHeap, temp, ref rightSize); insert(leftMaxHeap, temp, ref leftSize); } // Compute median double median; if (leftSize != rightSize) median = getMax(leftMaxHeap); else median = (getMax(leftMaxHeap) + getMin(rightMinHeap)) / 2.0; res.Add(median); } return res; } static void Main() { int[] arr = {5, 15, 1, 3, 2, 8}; List<double> res = getMedian(arr); foreach (double median in res) Console.Write(median.ToString("F2") + " "); } }
JavaScript //Driver Code Starts{ // JavaScript program to find Median from Running Data Stream // Using Heaps class Heap { constructor(compare) { this.data = []; this.compare = compare; } push(val) { this.data.push(val); this._heapifyUp(); } pop() { if (this.data.length === 0) return null; if (this.data.length === 1) return this.data.pop(); const top = this.data[0]; this.data[0] = this.data.pop(); this._heapifyDown(); return top; } peek() { return this.data[0] || null; } size() { return this.data.length; } _heapifyUp() { let index = this.data.length - 1; while (index > 0) { let parentIndex = Math.floor((index - 1) / 2); if (this.compare(this.data[parentIndex], this.data[index])) break; [this.data[parentIndex], this.data[index]] = [this.data[index], this.data[parentIndex]]; index = parentIndex; } } _heapifyDown() { let index = 0; const length = this.data.length; while (true) { let leftChildIdx = 2 * index + 1; let rightChildIdx = 2 * index + 2; let swapIdx = index; if (leftChildIdx < length && !this.compare(this.data[swapIdx], this.data[leftChildIdx])) { swapIdx = leftChildIdx; } if (rightChildIdx < length && !this.compare(this.data[swapIdx], this.data[rightChildIdx])) { swapIdx = rightChildIdx; } if (swapIdx === index) break; [this.data[index], this.data[swapIdx]] = [this.data[swapIdx], this.data[index]]; index = swapIdx; } } } // MaxHeap (Stores smaller half of numbers) class MaxHeap extends Heap { constructor() { super((a, b) => a > b); // Max heap uses > comparator } } // MinHeap (Stores greater half of numbers) class MinHeap extends Heap { constructor() { super((a, b) => a < b); // Min heap uses < comparator } } //Driver Code Ends } // Function to find the median of a stream of data function getMedian(arr) { // Max heap for left side let leftMaxHeap = new MaxHeap(); // Min heap for right side let rightMinHeap = new MinHeap(); let res = []; for (let num of arr) { // Insert into max heap leftMaxHeap.push(num); // Balance heaps by moving element to min heap rightMinHeap.push(leftMaxHeap.pop()); // Ensure left heap has more or equal elements if (rightMinHeap.size() > leftMaxHeap.size()) { leftMaxHeap.push(rightMinHeap.pop()); } // Compute median based on heap sizes let median; if (leftMaxHeap.size() !== rightMinHeap.size()) median = leftMaxHeap.peek(); else median = (leftMaxHeap.peek() + rightMinHeap.peek()) / 2.0; res.push(median); } return res; } // Driver Code let arr = [5, 15, 1, 3, 2, 8]; let res = getMedian(arr); console.log(res.map(median => median.toFixed(2)).join(" "));
Output5.00 10.00 5.00 4.00 3.00 4.00
Time Complexity: O(n * log n), All the operations within the loop (push, pop) take O(log n) time in the worst case for a heap of size n.
Auxiliary Space: O(n)
Similar Reads
Heap Data Structure
A Heap is a complete binary tree data structure that satisfies the heap property: for every node, the value of its children is greater than or equal to its own value. Heaps are usually used to implement priority queues, where the smallest (or largest) element is always at the root of the tree. Basic
2 min read
Introduction to Heap - Data Structure and Algorithm Tutorials
A Heap is a special Tree-based Data Structure that has the following properties. It is a Complete Binary Tree.It either follows max heap or min heap property.Max-Heap: The value of the root node must be the greatest among all its descendant nodes and the same thing must be done for its left and righ
15+ min read
Binary Heap
A Binary Heap is a complete binary tree that stores data efficiently, allowing quick access to the maximum or minimum element, depending on the type of heap. It can either be a Min Heap or a Max Heap. In a Min Heap, the key at the root must be the smallest among all the keys in the heap, and this pr
13 min read
Advantages and Disadvantages of Heap
Advantages of Heap Data StructureTime Efficient: Heaps have an average time complexity of O(log n) for inserting and deleting elements, making them efficient for large datasets. We can convert any array to a heap in O(n) time. The most important thing is, we can get the min or max in O(1) timeSpace
2 min read
Time Complexity of building a heap
Consider the following algorithm for building a Heap of an input array A. A quick look over the above implementation suggests that the running time is [Tex]O(n * lg(n)) [/Tex] since each call to Heapify costs [Tex]O(lg(n)) [/Tex]and Build-Heap makes [Tex]O(n) [/Tex]such calls. This upper bound, thou
2 min read
Applications of Heap Data Structure
Heap Data Structure is generally taught with Heapsort. Heapsort algorithm has limited uses because Quicksort is better in practice. Nevertheless, the Heap data structure itself is enormously used. Priority Queues: Heaps are commonly used to implement priority queues, where elements with higher prior
2 min read
Comparison between Heap and Tree
What is Heap? A Heap is a special Tree-based data structure in which the tree is a complete binary tree. Types of Heap Data Structure: Generally, Heaps can be of two types: Max-Heap: In a Max-Heap the key present at the root node must be greatest among the keys present at all of its children. The sa
3 min read
When building a Heap, is the structure of Heap unique?
What is Heap? A heap is a tree based data structure where the tree is a complete binary tree that maintains the property that either the children of a node are less than itself (max heap) or the children are greater than the node (min heap). Properties of Heap: Structural Property: This property sta
4 min read
Easy problems on Heap
Check if a given Binary Tree is a Heap
Given a binary tree, check if it has heap property or not, Binary tree needs to fulfil the following two conditions for being a heap: It should be a complete tree (i.e. Every level of the tree, except possibly the last, is completely filled, and all nodes are as far left as possible.).Every nodeâs v
15+ min read
How to check if a given array represents a Binary Heap?
Given an array, how to check if the given array represents a Binary Max-Heap.Examples: Input: arr[] = {90, 15, 10, 7, 12, 2} Output: True The given array represents below tree 90 / \ 15 10 / \ / 7 12 2 The tree follows max-heap property as every node is greater than all of its descendants. Input: ar
11 min read
Iterative HeapSort
HeapSort is a comparison-based sorting technique where we first build Max Heap and then swap the root element with the last element (size times) and maintains the heap property each time to finally make it sorted. Examples: Input : 10 20 15 17 9 21 Output : 9 10 15 17 20 21 Input: 12 11 13 5 6 7 15
11 min read
Find k largest elements in an array
Given an array arr[] and an integer k, the task is to find k largest elements in the given array. Elements in the output array should be in decreasing order. Examples: Input: [1, 23, 12, 9, 30, 2, 50], k = 3Output: [50, 30, 23] Input: [11, 5, 12, 9, 44, 17, 2], k = 2Output: [44, 17] Table of Content
15+ min read
Kâth Smallest Element in Unsorted Array
Given an array arr[] of N distinct elements and a number K, where K is smaller than the size of the array. Find the K'th smallest element in the given array. Examples: Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3 Output: 7 Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 4 Output: 10 Table of Content [Naive
15+ min read
Height of a complete binary tree (or Heap) with N nodes
Consider a Binary Heap of size N. We need to find the height of it. Examples: Input : N = 6 Output : 2 () / \ () () / \ / () () () Input : N = 9 Output : 3 () / \ () () / \ / \ () () () () / \ () ()Recommended PracticeHeight of HeapTry It! Let the size of the heap be N and the height be h. If we tak
3 min read
Heap Sort for decreasing order using min heap
Given an array of elements, sort the array in decreasing order using min heap. Examples: Input : arr[] = {5, 3, 10, 1}Output : arr[] = {10, 5, 3, 1}Input : arr[] = {1, 50, 100, 25}Output : arr[] = {100, 50, 25, 1} Prerequisite: Heap sort using min heap. Using Min Heap Implementation - O(n Log n) Tim
11 min read