Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Maximum number in Binary tree of binary values
Next article icon

Maximum width of a Binary Tree with null value

Last Updated : 20 Feb, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a Binary Tree consisting of N nodes, the task is to find the maximum width of the given tree where the maximum width is defined as the maximum of all the widths at each level of the given Tree.

The width of a tree for any level is defined as the number of nodes between the two extreme nodes of that level including the NULL node in between.

Examples:

Input:
                    1
                  /  \
               2    3
             / \      \
          4   5      8
        / \
     6   7
Output: 4
Explanation:
The width of level 1 is 1
The width of level 2 is 2
The width of level 3 is 4 (because it has a null node in between 5 and 8)
The width of level 4 is 2

Therefore, the maximum width of the tree is the maximum of all the widths i.e., max{1, 2, 4, 2} = 4.

Input:
                   1
                 /  
               2 
             /
           3   
Output: 1

Approach: The given problem can be solved by representing the Binary Tree as the array representation of the Heap. Assume the index of a node is i then the indices of their children are (2*i + 1) and (2*i + 2). Now, for each level, find the position of the leftmost node and rightmost node in each level, then the difference between them will give the width of that level. Follow the steps below to solve this problem:

  • Initialize two HashMap, say HMMax and HMMin that stores the position of the leftmost node and rightmost node in each level
  • Create a recursive function getMaxWidthHelper(root, lvl, i) that takes the root of the tree, starting level of the tree initially 0, and position of the root node of the tree initially 0 and perform the following steps:
    • If the root of the tree is NULL, then return.
    • Store the leftmost node index at level lvl in the HMMin.
    • Store the rightmost node index at level lvl in the HMMax.
    • Recursively call for the left sub-tree by updating the value of lvl to lvl + 1 and i to (2*i + 1).
    • Recursively call for the right sub-tree by updating the value of lvl to lvl + 1 and i to (2*i + 2).
  • Call the function getMaxWidthHelper(root, 0, 0) to fill the HashMap.
  • After completing the above steps, print the maximum value of (HMMax(L) - HMMin(L) + 1) among all possible values of level L.

Below is the implementation of the above approach:

C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std;  // Tree Node structure struct Node {     int data;     Node *left, *right;          // Constructor     Node(int item)     {         data = item;         left = right = NULL;     } };  Node *root; int maxx = 0;  // Stores the position of leftmost // and rightmost node in each level map<int, int> hm_min; map<int, int> hm_max;  // Function to store the min and the // max index of each nodes in hashmaps void getMaxWidthHelper(Node *node,                        int lvl, int i) {          // Base Case     if (node == NULL)      {         return;     }      // Stores rightmost node index     // in the hm_max     if (hm_max[lvl])     {         hm_max[lvl] = max(i, hm_max[lvl]);     }     else      {         hm_max[lvl] = i;     }      // Stores leftmost node index     // in the hm_min     if (hm_min[lvl])     {         hm_min[lvl] = min(i, hm_min[lvl]);     }      // Otherwise     else      {         hm_min[lvl] = i;     }      // If the left child of the node     // is not empty, traverse next     // level with index = 2*i + 1     getMaxWidthHelper(node->left, lvl + 1,                                  2 * i + 1);      // If the right child of the node     // is not empty, traverse next     // level with index = 2*i + 2     getMaxWidthHelper(node->right, lvl + 1,                                   2 * i + 2); }  // Function to find the maximum // width of the tree int getMaxWidth(Node *root) {          // Helper function to fill     // the hashmaps     getMaxWidthHelper(root, 0, 0);      // Traverse to each level and     // find the maximum width     for(auto lvl : hm_max)      {         maxx = max(maxx, hm_max[lvl.first] -                           hm_min[lvl.first] + 1);     }      // Return the result     return maxx; }  // Driver Code int main() {          /*     Constructed binary tree is:           1         /  \        2    3      /  \    \     4   5     8              /  \             6   7      */     root = new Node(1);     root->left = new Node(2);     root->right = new Node(3);     root->left->left = new Node(4);     root->left->right = new Node(5);     root->right->right = new Node(8);     root->right->right->left = new Node(6);     root->right->right->right = new Node(7);      // Function Call     cout << (getMaxWidth(root)); }  // This code is contributed by mohit kumar 29 
Java
// Java program for the above approach  import java.util.*;  // Tree Node structure class Node {     int data;     Node left, right;      // Constructor     Node(int item)     {         data = item;         left = right = null;     } }  // Driver Code public class Main {      Node root;     int maxx = 0;      // Stores the position of leftmost     // and rightmost node in each level     HashMap<Integer, Integer> hm_min         = new HashMap<>();     HashMap<Integer, Integer> hm_max         = new HashMap<>();      // Function to store the min and the     // max index of each nodes in hashmaps     void getMaxWidthHelper(Node node,                            int lvl, int i)     {         // Base Case         if (node == null) {             return;         }          // Stores rightmost node index         // in the hm_max         if (hm_max.containsKey(lvl)) {             hm_max.put(lvl,                        Math.max(                            i, hm_max.get(lvl)));         }         else {             hm_max.put(lvl, i);         }          // Stores leftmost node index         // in the hm_min         if (hm_min.containsKey(lvl)) {             hm_min.put(lvl,                        Math.min(                            i, hm_min.get(lvl)));         }          // Otherwise         else {             hm_min.put(lvl, i);         }          // If the left child of the node         // is not empty, traverse next         // level with index = 2*i + 1         getMaxWidthHelper(node.left, lvl + 1,                           2 * i + 1);          // If the right child of the node         // is not empty, traverse next         // level with index = 2*i + 2         getMaxWidthHelper(node.right, lvl + 1,                           2 * i + 2);     }      // Function to find the maximum     // width of the tree     int getMaxWidth(Node root)     {         // Helper function to fill         // the hashmaps         getMaxWidthHelper(root, 0, 0);          // Traverse to each level and         // find the maximum width         for (Integer lvl : hm_max.keySet()) {             maxx                 = Math.max(                     maxx,                     hm_max.get(lvl)                         - hm_min.get(lvl) + 1);         }          // Return the result         return maxx;     }      // Driver Code     public static void main(String args[])     {         Main tree = new Main();          /*         Constructed binary tree is:               1             /  \            2    3          /  \    \         4   5     8                  /  \                 6   7          */         tree.root = new Node(1);         tree.root.left = new Node(2);         tree.root.right = new Node(3);         tree.root.left.left = new Node(4);         tree.root.left.right = new Node(5);         tree.root.right.right = new Node(8);         tree.root.right.right.left = new Node(6);         tree.root.right.right.right = new Node(7);          // Function Call         System.out.println(             tree.getMaxWidth(                 tree.root));     } } 
Python3
# Python3 program for the above approach  # Tree Node structure class Node:     def __init__(self, item):         self.data = item         self.left = None         self.right = None  maxx = 0   # Stores the position of leftmost # and rightmost node in each level hm_min = {} hm_max = {}   # Function to store the min and the # max index of each nodes in hashmaps def getMaxWidthHelper(node, lvl, i):     # Base Case     if (node == None):         return     # Stores rightmost node index     # in the hm_max     if (lvl in hm_max):         hm_max[lvl] = max(i, hm_max[lvl])     else:         hm_max[lvl] = i       # Stores leftmost node index     # in the hm_min     if (lvl in hm_min):         hm_min[lvl] = min(i, hm_min[lvl])       # Otherwise     else:         hm_min[lvl] = i       # If the left child of the node     # is not empty, traverse next     # level with index = 2*i + 1     getMaxWidthHelper(node.left, lvl + 1, 2 * i + 1)       # If the right child of the node     # is not empty, traverse next     # level with index = 2*i + 2     getMaxWidthHelper(node.right, lvl + 1, 2 * i + 2)   # Function to find the maximum # width of the tree def getMaxWidth(root):     global maxx     # Helper function to fill     # the hashmaps     getMaxWidthHelper(root, 0, 0)       # Traverse to each level and     # find the maximum width     for lvl in hm_max.keys():         maxx = max(maxx, hm_max[lvl] - hm_min[lvl] + 1)       # Return the result     return maxx      """ Constructed binary tree is:       1     /  \    2    3  /  \    \ 4   5     8          /  \         6   7 """ root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.right = Node(8) root.right.right.left = Node(6) root.right.right.right = Node(7)  # Function Call print(getMaxWidth(root))  # This code is contributed by decode2207. 
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG {          // A Binary Tree Node     class Node     {         public int data;         public Node left;         public Node right;               public Node(int item)         {             data = item;             left = right = null;         }     };          static int maxx = 0;       // Stores the position of leftmost     // and rightmost node in each level     static Dictionary<int, int> hm_min = new Dictionary<int, int>();      static Dictionary<int, int> hm_max = new Dictionary<int, int>();       // Function to store the min and the     // max index of each nodes in hashmaps     static void getMaxWidthHelper(Node node,                            int lvl, int i)     {         // Base Case         if (node == null) {             return;         }           // Stores rightmost node index         // in the hm_max         if (hm_max.ContainsKey(lvl)) {             hm_max[lvl] = Math.Max(i, hm_max[lvl]);         }         else {             hm_max[lvl] = i;         }           // Stores leftmost node index         // in the hm_min         if (hm_min.ContainsKey(lvl)) {             hm_min[lvl] = Math.Min(i, hm_min[lvl]);         }           // Otherwise         else {             hm_min[lvl] = i;         }           // If the left child of the node         // is not empty, traverse next         // level with index = 2*i + 1         getMaxWidthHelper(node.left, lvl + 1,                           2 * i + 1);           // If the right child of the node         // is not empty, traverse next         // level with index = 2*i + 2         getMaxWidthHelper(node.right, lvl + 1,                           2 * i + 2);     }       // Function to find the maximum     // width of the tree     static int getMaxWidth(Node root)     {         // Helper function to fill         // the hashmaps         getMaxWidthHelper(root, 0, 0);           // Traverse to each level and         // find the maximum width         foreach (KeyValuePair<int, int> lvl in hm_max) {             maxx = Math.Max(maxx, hm_max[lvl.Key] - hm_min[lvl.Key] + 1);         }           // Return the result         return maxx;     }      // Driver code   static void Main()    {       /*     Constructed binary tree is:           1         /  \        2    3      /  \    \     4   5     8              /  \             6   7      */     Node root = new Node(1);     root.left = new Node(2);     root.right = new Node(3);     root.left.left = new Node(4);     root.left.right = new Node(5);     root.right.right = new Node(8);     root.right.right.left = new Node(6);     root.right.right.right = new Node(7);      // Function Call     Console.Write(getMaxWidth(root));   } }  // This code is contributed by divyeshrabadiya07. 
JavaScript
<script>  // JavaScript program for the above approach  // Tree Node structure class Node {     constructor(item)     {         this.data=item;         this.left=this.right=null;     } }  // Driver Code let root; let maxx = 0;  // Stores the position of leftmost     // and rightmost node in each level let hm_min=new Map(); let hm_max=new Map();  // Function to store the min and the     // max index of each nodes in hashmaps function getMaxWidthHelper(node,lvl,i) {     // Base Case         if (node == null) {             return;         }           // Stores rightmost node index         // in the hm_max         if (hm_max.has(lvl)) {             hm_max.set(lvl,                        Math.max(                            i, hm_max.get(lvl)));         }         else {             hm_max.set(lvl, i);         }           // Stores leftmost node index         // in the hm_min         if (hm_min.has(lvl)) {             hm_min.set(lvl,                        Math.min(                            i, hm_min.get(lvl)));         }           // Otherwise         else {             hm_min.set(lvl, i);         }           // If the left child of the node         // is not empty, traverse next         // level with index = 2*i + 1         getMaxWidthHelper(node.left, lvl + 1,                           2 * i + 1);           // If the right child of the node         // is not empty, traverse next         // level with index = 2*i + 2         getMaxWidthHelper(node.right, lvl + 1,                           2 * i + 2); }  // Function to find the maximum     // width of the tree function getMaxWidth(root) {     // Helper function to fill         // the hashmaps         getMaxWidthHelper(root, 0, 0);           // Traverse to each level and         // find the maximum width         for (let [lvl, value] of hm_max.entries()) {             maxx                 = Math.max(                     maxx,                     hm_max.get(lvl)                         - hm_min.get(lvl) + 1);         }           // Return the result         return maxx; }  // Driver Code root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.right = new Node(8); root.right.right.left = new Node(6); root.right.right.right = new Node(7);  // Function Call document.write(getMaxWidth(root));  // This code is contributed by unknown2108  </script> 

Output: 
4

 

Time Complexity: O(N)
Auxiliary Space: O(N)


Next Article
Maximum number in Binary tree of binary values

R

rv60231023
Improve
Article Tags :
  • Tree
  • Algorithms
  • Hash
  • Binary Search Tree
  • DSA
  • Binary Tree
  • DFS
  • HashTable
Practice Tags :
  • Algorithms
  • Binary Search Tree
  • DFS
  • Hash
  • Tree

Similar Reads

  • Maximum width of a Binary Tree with null values | Set 2
    Pre-requisite: Maximum width of a Binary Tree with null value | Set 1 Given a Binary Tree consisting of N nodes, the task is to find the maximum width of the given tree without using recursion, where the maximum width is defined as the maximum of all the widths at each level of the given Tree. Note:
    8 min read
  • Maximum width of a Binary Tree
    Given a binary tree, the task is to find the maximum width of the given tree. The width of a tree is the maximum of the widths of all levels. Before solving the problem first, let us understand what we have to do. Binary trees are one of the most common types of trees in computer science. They are a
    15+ min read
  • Maximum width of an N-ary tree
    Given an N-ary tree, the task is to find the maximum width of the given tree. The maximum width of a tree is the maximum of width among all levels. Examples: Input: 4 / | \ 2 3 -5 / \ /\ -1 3 -2 6 Output: 4 Explanation: Width of 0th level is 1. Width of 1st level is 3. Width of 2nd level is 4. There
    9 min read
  • Maximum number in Binary tree of binary values
    Given a binary tree consisting of nodes, each containing a binary value of either 0 or 1, the task is to find the maximum decimal number that can be formed by traversing from the root to a leaf node. The maximum number is achieved by concatenating the binary values along the path from the root to a
    6 min read
  • Find the Level of a Binary Tree with Width K
    Given a Binary Tree and an integer K, the task is to find the level of the Binary Tree with width K. If multiple levels exists with width K, print the lowest level. If no such level exists, print -1. The width of a level of a Binary tree is defined as the number of nodes between leftmost and the rig
    10 min read
  • Maximum XOR path of a Binary Tree
    Given a Binary Tree, the task is to find the maximum of all the XOR value of all the nodes in the path from the root to leaf.Examples: Input: 2 / \ 1 4 / \ 10 8 Output: 11 Explanation: All the paths are: 2-1-10 XOR-VALUE = 9 2-1-8 XOR-VALUE = 11 2-4 XOR-VALUE = 6 Input: 2 / \ 1 4 / \ / \ 10 8 5 10 O
    8 min read
  • Maximum XOR of Two Nodes in a Tree
    Given a binary tree, where each node has a binary value, design an efficient algorithm to find the maximum XOR of any two node values in the tree. Examples: Input: 1 / \ 2 3 / \ /4 5 6Output: 7Explanation: 6 XOR 1 = 7 Input: 1 / \ 5 2 / \9 3 Output: 12Explanation: 9 XOR 5 = 12 Naive Approach: A simp
    15+ min read
  • Vertical width of Binary tree | Set 1
    Given a Binary tree, the task is to find the vertical width of the Binary tree. The width of a binary tree is the number of vertical paths in the Binary tree. Examples: Input: Output: 6Explanation: In this image, the tree contains 6 vertical lines which are the required width of the tree. Input : 7
    14 min read
  • Vertical width of Binary tree | Set 2
    Given a binary tree, find the vertical width of the binary tree. The width of a binary tree is the number of vertical paths. Examples: Input : 7 / \ 6 5 / \ / \ 4 3 2 1 Output : 5 Input : 1 / \ 2 3 / \ / \ 4 5 6 7 \ \ 8 9 Output : 6 Prerequisite: Print Binary Tree in Vertical order In this image, th
    5 min read
  • Find the node whose xor with x gives maximum value
    Given a tree, and the weights of all the nodes and an integer x, the task is to find a node i such that weight[i] xor x is maximum.Examples: Input: x = 15 Output: 1 Node 1: 5 xor 15 = 10 Node 2: 10 xor 15 = 5 Node 3: 11 xor 15 = 4 Node 4: 8 xor 15 = 7 Node 5: 6 xor 15 = 9 Approach: Perform dfs on th
    5 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences