Given an array arr[] of size N, the task is to find the maximum sum non-empty subsequence present in the given array.
Examples:
Input: arr[] = { 2, 3, 7, 1, 9 }
Output: 22
Explanation:
Sum of the subsequence { arr[0], arr[1], arr[2], arr[3], arr[4] } is equal to 22, which is the maximum possible sum of any subsequence of the array.
Therefore, the required output is 22.
Input: arr[] = { -2, 11, -4, 2, -3, -10 }
Output: 13
Explanation:
Sum of the subsequence { arr[1], arr[3] } is equal to 13, which is the maximum possible sum of any subsequence of the array.
Therefore, the required output is 13.
Naive Approach: The simplest approach to solve this problem is to generate all possible non-empty subsequences of the array and calculate the sum of each subsequence of the array. Finally, print the maximum sum obtained from the subsequence.
Time Complexity: O(N * 2N)
Auxiliary Space: O(N)
Efficient Approach: The idea is to traverse the array and calculate the sum of positive elements of the array and print the sum obtained. Follow the steps below to solve the problem:
Below is the implementation of the above approach:
C++ // C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to print the maximum // non-empty subsequence sum int MaxNonEmpSubSeq(int a[], int n) { // Stores the maximum non-empty // subsequence sum in an array int sum = 0; // Stores the largest element // in the array int max = *max_element(a, a + n); if (max <= 0) { return max; } // Traverse the array for (int i = 0; i < n; i++) { // If a[i] is greater than 0 if (a[i] > 0) { // Update sum sum += a[i]; } } return sum; } // Driver Code int main() { int arr[] = { -2, 11, -4, 2, -3, -10 }; int N = sizeof(arr) / sizeof(arr[0]); cout << MaxNonEmpSubSeq(arr, N); return 0; }
Java // Java program to implement // the above approach import java.util.*; class GFG { // Function to print the maximum // non-empty subsequence sum static int MaxNonEmpSubSeq(int a[], int n) { // Stores the maximum non-empty // subsequence sum in an array int sum = 0; // Stores the largest element // in the array int max = a[0]; for(int i = 1; i < n; i++) { if(max < a[i]) { max = a[i]; } } if (max <= 0) { return max; } // Traverse the array for (int i = 0; i < n; i++) { // If a[i] is greater than 0 if (a[i] > 0) { // Update sum sum += a[i]; } } return sum; } // Driver code public static void main(String[] args) { int arr[] = { -2, 11, -4, 2, -3, -10 }; int N = arr.length; System.out.println(MaxNonEmpSubSeq(arr, N)); } } // This code is contributed by divyesh072019
Python3 # Python3 program to implement # the above approach # Function to print the maximum # non-empty subsequence sum def MaxNonEmpSubSeq(a, n): # Stores the maximum non-empty # subsequence sum in an array sum = 0 # Stores the largest element # in the array maxm = max(a) if (maxm <= 0): return maxm # Traverse the array for i in range(n): # If a[i] is greater than 0 if (a[i] > 0): # Update sum sum += a[i] return sum # Driver Code if __name__ == '__main__': arr = [ -2, 11, -4, 2, -3, -10 ] N = len(arr) print(MaxNonEmpSubSeq(arr, N)) # This code is contributed by mohit kumar 29
C# // C# program to implement // the above approach using System; class GFG{ // Function to print the maximum // non-empty subsequence sum static int MaxNonEmpSubSeq(int[] a, int n) { // Stores the maximum non-empty // subsequence sum in an array int sum = 0; // Stores the largest element // in the array int max = a[0]; for(int i = 1; i < n; i++) { if (max < a[i]) { max = a[i]; } } if (max <= 0) { return max; } // Traverse the array for(int i = 0; i < n; i++) { // If a[i] is greater than 0 if (a[i] > 0) { // Update sum sum += a[i]; } } return sum; } // Driver Code static void Main() { int[] arr = { -2, 11, -4, 2, -3, -10 }; int N = arr.Length; Console.WriteLine(MaxNonEmpSubSeq(arr, N)); } } // This code is contributed by divyeshrabadiya07
JavaScript <script> // Javascript program to implement // the above approach // Function to print the maximum // non-empty subsequence sum function MaxNonEmpSubSeq(a, n) { // Stores the maximum non-empty // subsequence sum in an array let sum = 0; // Stores the largest element // in the array let max = a[0]; for(let i = 1; i < n; i++) { if (max < a[i]) { max = a[i]; } } if (max <= 0) { return max; } // Traverse the array for(let i = 0; i < n; i++) { // If a[i] is greater than 0 if (a[i] > 0) { // Update sum sum += a[i]; } } return sum; } let arr = [ -2, 11, -4, 2, -3, -10 ]; let N = arr.length; document.write(MaxNonEmpSubSeq(arr, N)); </script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Maximum Sum Increasing Subsequence Given an array arr[] of n positive integers. The task is to find the sum of the maximum sum subsequence of the given array such that the integers in the subsequence are sorted in strictly increasing order.Examples:Input: arr[] = [1, 101, 2, 3, 100]Output: 106Explanation: The maximum sum of a increas
15+ min read
Maximum Sum Decreasing Subsequence Given an array of N positive integers. The task is to find the sum of the maximum sum decreasing subsequence(MSDS) of the given array such that the integers in the subsequence are sorted in decreasing order. Examples: Input: arr[] = {5, 4, 100, 3, 2, 101, 1} Output: 106 100 + 3 + 2 + 1 = 106 Input:
7 min read
Maximum Sum Subsequence of length k Given an array sequence [A1, A2 ...An], the task is to find the maximum possible sum of increasing subsequence S of length k such that S1<=S2<=S3.........<=Sk. Examples: Input : n = 8 k = 3 A=[8 5 9 10 5 6 21 8] Output : 40 Possible Increasing subsequence of Length 3 with maximum possible s
11 min read
Maximum sum alternating subsequence Given an array, the task is to find sum of maximum sum alternating subsequence starting with first element. Here alternating sequence means first decreasing, then increasing, then decreasing, ... For example 10, 5, 14, 3 is an alternating sequence. Note that the reverse type of sequence (increasing
13 min read
Longest subsequence having maximum sum Given an array arr[] of size N, the task is to find the longest non-empty subsequence from the given array whose sum is maximum. Examples: Input: arr[] = { 1, 2, -4, -2, 3, 0 } Output: 1 2 3 0 Explanation: Sum of elements of the subsequence {1, 2, 3, 0} is 6 which is the maximum possible sum. Theref
8 min read