Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Questions on Array
  • Practice Array
  • MCQs on Array
  • Tutorial on Array
  • Types of Arrays
  • Array Operations
  • Subarrays, Subsequences, Subsets
  • Reverse Array
  • Static Vs Arrays
  • Array Vs Linked List
  • Array | Range Queries
  • Advantages & Disadvantages
Open In App
Next Article:
Maximum sum two non-overlapping subarrays of given size
Next article icon

Maximum sum of lengths of non-overlapping subarrays with k as the max element.

Last Updated : 12 Oct, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Find the maximum sum of lengths of non-overlapping subarrays (contiguous elements) with k as the maximum element. 

Examples: 

Input : arr[] = {2, 1, 4, 9, 2, 3, 8, 3, 4}          k = 4 Output : 5 {2, 1, 4} => Length = 3 {3, 4} => Length = 2 So, 3 + 2 = 5 is the answer  Input : arr[] = {1, 2, 3, 2, 3, 4, 1}          k = 4 Output : 7 {1, 2, 3, 2, 3, 4, 1} => Length = 7  Input : arr = {4, 5, 7, 1, 2, 9, 8, 4, 3, 1}         k = 4 Ans = 4 {4} => Length = 1 {4, 3, 1} => Length = 3 So, 1 + 3 = 4 is the answer

Question source : https://www.geeksforgeeks.org/amazon-interview-experience-set-376-campus-internship/

Recommended PracticeSum of Lengths of Non-Overlapping SubArraysTry It!

Algorithm : 

Traverse the array starting from first element    Take a loop and keep on incrementing count     If element is less than equal to k        if array element is equal to k, then mark        a flag        If flag is marked, add this count to answer        Take another loop and traverse the array     till element is greater than k return ans

Implementation:

C++




// CPP program to calculate max sum lengths of
// non overlapping contiguous subarrays with k as
// max element
#include <bits/stdc++.h>
using namespace std;
  
// Returns max sum of lengths with maximum element
// as k
int calculateMaxSumLength(int arr[], int n, int k)
{
    int ans = 0; // final sum of lengths
  
    // number of elements in current subarray
    int count = 0;
  
    // variable for checking if k appeared in subarray
    int flag = 0;
  
    for (int i = 0; i < n;) {
        count = 0;
        flag = 0;
  
        // count the number of elements which are
        // less than equal to k
        while (arr[i] <= k && i < n) {
            count++;
            if (arr[i] == k)
                flag = 1;
            i++;
        }
  
        // if current element appeared in current
        // subarray add count to sumLength
        if (flag == 1)
            ans += count;   
  
        // skip the array elements which are
        // greater than k
        while (arr[i] > k && i < n)
            i++;    
    }
    return ans;
}
  
// driver program
int main()
{
    int arr[] = { 4, 5, 7, 1, 2, 9, 8, 4, 3, 1 };
    int size = sizeof(arr) / sizeof(arr[0]);
    int k = 4;
    int ans = calculateMaxSumLength(arr, size, k);
    cout << "Max Length :: " << ans << endl;
    return 0;
}
 
 

Java




// A Java program to calculate max sum lengths of
// non overlapping contiguous subarrays with k as
// max element
public class GFG
{
    // Returns max sum of lengths with maximum element
    // as k
    static int calculateMaxSumLength(int arr[], int n, int k) {
        int ans = 0; // final sum of lengths
 
        // number of elements in current subarray
        int count = 0;
 
        // variable for checking if k appeared in subarray
        int flag = 0;
 
        for (int i = 0; i < n;) {
            count = 0;
            flag = 0;
 
            // count the number of elements which are
            // less than equal to k
            while (i < n && arr[i] <= k) {
                count++;
                if (arr[i] == k)
                    flag = 1;
                i++;
            }
 
            // if current element appeared in current
            // subarray add count to sumLength
            if (flag == 1)
                ans += count;
 
            // skip the array elements which are
            // greater than k
            while (i < n && arr[i] > k)
                i++;
        }
        return ans;
    }
 
    // driver program to test above method
    public static void main(String[] args) {
 
        int arr[] = { 4, 5, 7, 1, 2, 9, 8, 4, 3, 1 };
        int size = arr.length;
        int k = 4;
        int ans = calculateMaxSumLength(arr, size, k);
        System.out.println("Max Length :: " + ans);
    }
}
// This code is contributed by Sumit Ghosh
 
 

Python3




# Python program to calculate max sum lengths of non
# overlapping contiguous subarrays with k as max element
 
# Returns max sum of lengths with max elements as k
def calculateMaxSumLength(arr, n, k):
    ans = 0 # final sum of lengths
    i=0
    while i < n :
         
        # number of elements in current sub array
        count = 0
         
        # Variable for checking if k appeared in the sub array
        flag = 0
         
        # Count the number of elements which are
        # less than or equal to k
        while i < n and arr[i] <= k :
            count = count + 1
            if arr[i] == k:
                flag = 1
            i = i + 1
             
        # if current element appeared in current
        # subarray and count to sumLength
        if flag == 1:
            ans = ans + count
             
        # skip the array elements which are greater than k
        while i < n and arr[i] > k :
            i = i + 1
              
    return ans
     
# Driver Program
arr = [4, 5, 7, 1, 2, 9, 8, 4, 3, 1]
size = len(arr)
k = 4
ans = calculateMaxSumLength(arr, size, k)
print ("Max Length ::",ans)
 
# Contributed by Rohit
 
 

C#




// A C# program to calculate max
// sum lengths of non overlapping
// contiguous subarrays with k as
// max element
using System;
class GFG {
     
    // Returns max sum of lengths
    // with maximum element as k
    static int calculateMaxSumLength(int []arr,
                                     int n,
                                     int k)
    {
         
        // final sum of lengths
        int ans = 0;
 
        // number of elements in
        // current subarray
        int count = 0;
 
        // variable for checking if
        // k appeared in subarray
        int flag = 0;
 
        for(int i = 0; i < n;)
        {
            count = 0;
            flag = 0;
 
            // count the number of
            // elements which are
            // less than equal to k
            while (i < n && arr[i] <= k)
            {
                count++;
                if (arr[i] == k)
                    flag = 1;
                i++;
            }
 
            // if current element
            // appeared in current
            // subarray add count
            // to sumLength
            if (flag == 1)
                ans += count;
 
            // skip the array
            // elements which are
            // greater than k
            while (i < n && arr[i] > k)
                i++;
        }
        return ans;
    }
 
    // Driver Code
    public static void Main()
    {
        int []arr = {4, 5, 7, 1, 2, 9, 8, 4, 3, 1};
        int size = arr.Length;
        int k = 4;
        int ans = calculateMaxSumLength(arr, size, k);
        Console.WriteLine("Max Length :: " + ans);
    }
}
 
// This code is contributed by anuj_67.
 
 

PHP




<?php
// PHP program to calculate max sum lengths
// of non overlapping contiguous subarrays
// with k as max element
 
// Returns max sum of lengths with maximum
// element as k
function calculateMaxSumLength(&$arr, $n, $k)
{
    $ans = 0; // final sum of lengths
 
    // number of elements in current subarray
    $count = 0;
 
    // variable for checking if k
    // appeared in subarray
    $flag = 0;
 
    for ($i = 0; $i < $n😉
    {
        $count = 0;
        $flag = 0;
 
        // count the number of elements which
        // are less than equal to k
        while ($arr[$i] <= $k && $i < $n)
        {
            $count++;
            if ($arr[$i] == $k)
                $flag = 1;
            $i++;
        }
 
        // if current element appeared in current
        // subarray add count to sumLength
        if ($flag == 1)
            $ans += $count;
 
        // skip the array elements which are
        // greater than k
        while ($arr[$i] > $k && $i < $n)
            $i++;    
    }
    return $ans;
}
 
// Driver Code
$arr = array( 4, 5, 7, 1, 2,   
              9, 8, 4, 3, 1 );
$size = sizeof($arr);
$k = 4;
$ans = calculateMaxSumLength($arr, $size, $k);
echo "Max Length :: " . $ans . "\n";
 
// This code is contributed by ita_c
?>
 
 

Javascript




<script>
// A Javascript program to calculate max sum lengths of
// non overlapping contiguous subarrays with k as
// max element
     
    // Returns max sum of lengths with maximum element
    // as k
    function calculateMaxSumLength(arr,n,k)
    {
        let ans = 0; // final sum of lengths
  
        // number of elements in current subarray
        let count = 0;
  
        // variable for checking if k appeared in subarray
        let flag = 0;
  
        for (let i = 0; i < n;) {
            count = 0;
            flag = 0;
  
            // count the number of elements which are
            // less than equal to k
            while (i < n && arr[i] <= k) {
                count++;
                if (arr[i] == k)
                    flag = 1;
                i++;
            }
  
            // if current element appeared in current
            // subarray add count to sumLength
            if (flag == 1)
                ans += count;
  
            // skip the array elements which are
            // greater than k
            while (i < n && arr[i] > k)
                i++;
        }
        return ans;
    }
     
    // driver program to test above method
    let arr=[4, 5, 7, 1, 2, 9, 8, 4, 3, 1];
    let size = arr.length;
    let k = 4;
    let ans = calculateMaxSumLength(arr, size, k);
    document.write("Max Length :: " + ans);
     
    //This code is contributed by avanitrachhadiya2155
     
</script>
 
 
Output
Max Length :: 4

Time Complexity: O(n), It may look like O(n2), but if you take a closer look, array is traversed only once
Auxiliary Space: O(1)

Another approach:

Algorithm:

Traverse the array from first element to last element     if the element is less than k increment the count     if the element is equals to k          if k is not found             increment the count and mark flag as 1         if k is found             add the value of count to ans and mark count as 1     if the element is greater than k             if k is present in the subarray add the value of count to ans and             assign value of count and flag variables as 0 finally check again if k value is found in subarray or not     if k is found return sum of answer and count     if not return ans

Implementation:

C++




// C++ program to find Maximum sum of lengths of
// non-overlapping subarrays with k as the max element.
#include <bits/stdc++.h>
using namespace std;
// Below function calculates the Maximum sum of lengths of
// non-overlapping subarrays with k as the max element.
int calculateMaxSumLength(int arr[], int n, int k)
{
    // maximum sum of lengths
    int ans = 0;
    // number of elements in current subarray
    int count = 0;
    // flag variable for checking if k is present
    // in current subarray or not
    int flag = 0;
    for (int i = 0; i < n; i++) {
        // increment the count if element in arr is less
        // than k
        if (arr[i] < k) {
            count++;
        }
        // if the element is equals to k
        else if (arr[i] == k) {
            if (flag == 0) {
                count++;
                flag = 1;
            }
            // if flag is 1, we can say k is already present
            // in that subarray. So, add the value of count
            // to ans variable and make the count value as 1
            // because we found the k
            else {
                ans += count;
                count = 1;
            }
        }
        // if element in arr is greater than k
        else {
            // if k is present in the subarray
            // add the value of count to ans variable
            if (flag == 1) {
                ans += count;
            }
            // assign value of count and flag variables as 0
            count = 0;
            flag = 0;
        }
    }
    // Check again if k value is found in subarray
    // if k is found, return sum of values of variables ans
    // and count if k is not found, return value of variable
    // ans.
    if (flag == 1) {
        return ans + count;
    }
    return ans;
}
// driver program
int main()
{
    int arr[] = { 4, 5, 7, 1, 2, 9, 8, 4, 3, 1 };
    int size = sizeof(arr) / sizeof(arr[0]);
    int k = 4;
    int ans = calculateMaxSumLength(arr, size, k);
    cout << "Max Length :: " << ans << endl;
    return 0;
}
// Contributed by Ravi Teja Kuchipudi
 
 

Java




// JAVA program to find Maximum sum of lengths of
// non-overlapping subarrays with k as the max element.
class GFG {
    // Below function calculates the Maximum sum of lengths
    // of non-overlapping subarrays with k as the max
    // element.
    static int calculateMaxSumLength(int arr[], int n,
                                     int k)
    {
        // maximum sum of lengths
        int ans = 0;
        // number of elements in current subarray
        int count = 0;
        // flag variable for checking if k is present
        // in current subarray or not
        int flag = 0;
        for (int i = 0; i < n; i++) {
            // increment the count if element in arr is less
            // than k
            if (arr[i] < k) {
                count++;
            }
            // if the element is equals to k
            else if (arr[i] == k) {
                // if flag is equals to 0 then make flag
                // variable value as 1 and increment the
                // count.
                if (flag == 0) {
                    count++;
                    flag = 1;
                }
                // if flag is 1, we can say k is already
                // present in that subarray. So, add the
                // value of count to ans variable and make
                // the count value as 1 because we found the
                // k
                else {
                    ans += count;
                    count = 1;
                }
            }
            // if element in arr is greater than k
            else {
                // if k is present in the subarray
                // add the value of count to ans variable
                if (flag == 1) {
                    ans += count;
                }
                // assign value of count and flag variables
                // as 0
                count = 0;
                flag = 0;
            }
        }
        // Check again if k value is found in subarray
        // if k is found, return sum of values of variables
        // ans and count if k is not found, return value of
        // variable ans.
        if (flag == 1) {
            return ans + count;
        }
        return ans;
    }
    // driver program to test above method
    public static void main(String[] args)
    {
        int arr[] = { 4, 5, 7, 1, 2, 9, 8, 4, 3, 1 };
        int size = arr.length;
        int k = 4;
        int ans = calculateMaxSumLength(arr, size, k);
        System.out.println("Max Length :: " + ans);
    }
}
// Contributed by Ravi Teja Kuchipudi
 
 

Python3




# program to find Maximum sum of lengths of
# non-overlapping subarrays with k as the max element.
 
 
def calculateMaxSumLength(arr, n, k):
    # maximum sum of lengths
    ans = 0
    # number of elements in current subarray
    count = 0
    # flag variable for checking if k is present in current subarray or not
    flag = 0
 
    for i in range(n):
        # increment the count if element in arr is less than k
        if arr[i] < k:
            count = count+1
        # if the element is equals to k
        elif arr[i] == k:
            # if flag is equals to 0 then make flag variable value as 1 and
            # increment the count.
            if flag == 0:
                count = count + 1
                flag = 1
            # if flag is 1, we can say k is already present in that subarray.
            # So, add the value of count to ans variable and
            # make the count value as 1 because we found the k
            else:
                ans = ans + count
                count = 1
        # if element in arr is greater than k
        else:
            # if k is present in the subarray
            # add the value of count to ans variable
            if flag == 1:
                ans = ans + count
            # assign value of count and flag variables as 0
            count = 0
            flag = 0
    # Check again if k value is found in subarray
    # if k is found, return sum of values of variables ans and count
    # if k is not found, return value of variable ans.
    if flag == 1:
        return ans + count
    return ans
 
 
# Driver Program
arr = [4, 5, 7, 1, 2, 9, 8, 4, 3, 1]
size = len(arr)
k = 4
ans = calculateMaxSumLength(arr, size, k)
print("Max Length ::", ans)
 
# Contributed by Ravi Teja Kuchipudi
 
 

C#




// C# program to find Maximum sum of lengths of
// non-overlapping subarrays with k as the max element.
using System;
class GFG
{
    // Returns max sum of lengths
    // with maximum element as k
    static int calculateMaxSumLength(int[] arr, int n, int k)
    {
        // maximum sum of lengths
        int ans = 0;
        // number of elements in current subarray
        int count = 0;
        // flag variable for checking if k is present
        // in current subarray or not
        int flag = 0;
        for (int i = 0; i < n; i++)
        {
            // increment the count if element in arr is less
            // than k
            if (arr[i] < k)
            {
                count++;
            }
            // if the element is equals to k
            else if (arr[i] == k)
            {
                // if flag is equals to 0 then make flag
                // variable value as 1 and increment the
                // count.
                if (flag == 0)
                {
                    count++;
                    flag = 1;
                }
                // if flag is 1, we can say k is already
                // present in that subarray. So, add the
                // value of count to ans variable and make
                // the count value as 1 because we found the
                // k
                else
                {
                    ans += count;
                    count = 1;
                }
            }
            // if element in arr is greater than k
            else
            {
                // if k is present in the subarray
                // add the value of count to ans variable
                if (flag == 1)
                {
                    ans += count;
                }
                // assign value of count and flag variables
                // as 0
                count = 0;
                flag = 0;
            }
        }
        // Check again if k value is found in subarray
        // if k is found, return sum of values of variables
        // ans and count if k is not found, return value of
        // variable ans.
        if (flag == 1)
        {
            return ans + count;
        }
        return ans;
    }
 
    // Driver Code
    public static void Main()
    {
        int []arr = {4, 5, 7, 1, 2, 9, 8, 4, 3, 1};
        int size = arr.Length;
        int k = 4;
        int ans = calculateMaxSumLength(arr, size, k);
        Console.WriteLine("Max Length :: " + ans);
    }
}
 
// This code is contributed by kothavvsaakash
 
 

Javascript




<script>
 
// JavaScript program to find Maximum sum of lengths of
// non-overlapping subarrays with k as the max element.
 
// Below function calculates the Maximum sum of lengths of
// non-overlapping subarrays with k as the max element.
function calculateMaxSumLength(arr, n, k)
{
    // maximum sum of lengths
    let ans = 0;
     
    // number of elements in current subarray
    let count = 0;
     
    // flag variable for checking if k is present
    // in current subarray or not
    let flag = 0;
    for (let i = 0; i < n; i++)
    {
     
        // increment the count if element in arr is less
        // than k
        if (arr[i] < k) {
            count++;
        }
         
        // if the element is equals to k
        else if (arr[i] == k) {
            if (flag == 0) {
                count++;
                flag = 1;
            }
             
            // if flag is 1, we can say k is already present
            // in that subarray. So, add the value of count
            // to ans variable and make the count value as 1
            // because we found the k
            else {
                ans += count;
                count = 1;
            }
        }
         
        // if element in arr is greater than k
        else
        {
         
            // if k is present in the subarray
            // add the value of count to ans variable
            if (flag == 1)
            {
                ans += count;
            }
             
            // assign value of count and flag variables as 0
            count = 0;
            flag = 0;
        }
    }
     
    // Check again if k value is found in subarray
    // if k is found, return sum of values of variables ans
    // and count if k is not found, return value of variable
    // ans.
    if (flag == 1) {
        return ans + count;
    }
    return ans;
}
 
// driver program
let arr = [ 4, 5, 7, 1, 2, 9, 8, 4, 3, 1 ];
let size = arr.length;
let k = 4;
let ans = calculateMaxSumLength(arr, size, k);
document.write("Max Length :: ",ans,"</br>");
 
// This code is contributed by shinjanpatra
 
</script>
 
 
Output
Max Length :: 4

Time Complexity: O(n) 
Auxiliary Space: O(1)



Next Article
Maximum sum two non-overlapping subarrays of given size
https://media.geeksforgeeks.org/auth/avatar.png
GeeksforGeeks
Improve
Article Tags :
  • Arrays
  • DSA
  • Amazon
  • subarray
  • subarray-sum
Practice Tags :
  • Amazon
  • Arrays

Similar Reads

  • Maximum Sum of two non-overlapping Subarrays of any length
    Given an array A consisting of N integers, the task is to find the maximum sum of two non-overlapping subarrays of any length of the array. Note: You can select empty subarrays also. Examples: Input: N = 3, A[] = {-4, -5, -2}Output: 0Explanation: Two empty subarrays are optimal with maximum sum = 0.
    6 min read
  • Maximum sum of non-overlapping subarrays of length atmost K
    Given an integer array 'arr' of length N and an integer 'k', select some non-overlapping subarrays such that each sub-array if of length at most 'k', no two sub-arrays are adjacent and sum of all the elements of the selected sub-arrays are maximum.Examples: Input : arr[] = {-1, 2, -3, 4, 5}, k = 2 O
    10 min read
  • Maximize the sum of maximum elements of at least K-sized subarrays
    Given an integer array arr[] of length N and an integer K, partition the array in some non-overlapping subarrays such that each subarray has size at least K and each element of the array should be part of a subarray. The task is to maximize the sum of maximum elements across all the subarrays. Examp
    7 min read
  • Maximize count of non-overlapping subarrays with sum K
    Given an array arr[] and an integer K, the task is to print the maximum number of non-overlapping subarrays with a sum equal to K. Examples: Input: arr[] = {-2, 6, 6, 3, 5, 4, 1, 2, 8}, K = 10Output: 3Explanation: All possible non-overlapping subarrays with sum K(= 10) are {-2, 6, 6}, {5, 4, 1}, {2,
    6 min read
  • Maximum sum two non-overlapping subarrays of given size
    Given an array, we need to find two subarrays with a specific length K such that sum of these subarrays is maximum among all possible choices of subarrays. Examples: Input : arr[] = [2, 5, 1, 2, 7, 3, 0] K = 2 Output : 2 5 7 3 We can choose two arrays of maximum sum as [2, 5] and [7, 3], the sum of
    12 min read
  • Maximum sum of at most K non-overlapping Subarray
    Given an array, arr[] of size N, the task is to find the sum of the at most K non-overlapping contiguous subarray within an arr[] with the maximum sum. Examples: Input: arr[] = [4, 1, -3, 7, -5, 6, -2, 1], K = 3Output: 18Explanation: In the above input, the maximum k subarray sum is 18 and the subar
    15 min read
  • Max sum of M non-overlapping subarrays of size K
    Given an array and two numbers M and K. We need to find the max sum of sums of M subarrays of size K (non-overlapping) in the array. (Order of array remains unchanged). K is the size of subarrays and M is the count of subarray. It may be assumed that size of array is more than m*k. If total array si
    15+ min read
  • Maximum non overlapping Subset with sum greater than K
    Given an array, arr[] and integer K, the task is to find the maximum number of non-overlapping subsets such that the sum of the subsets is strictly greater than K when you may also change the value of each element to the maximum value of the particular subset. Examples: Input: arr[]= {90, 80, 70, 60
    5 min read
  • Maximum sum of subarrays having distinct elements of length K
    Given an array, arr[] and a value k, represent the length of the subarray to be considered. Find the maximum sum that can be obtained from the subarray of length k such that each element of the subarray is unique. If there is no subarray that meets the required condition then return 0. Examples: Inp
    13 min read
  • Count non-overlapping Subarrays of size K with equal alternate elements
    Given an array arr[] of length N, the task is to find the count of non-overlapping subarrays of size K such that the alternate elements are equal. Examples: Input: arr[] = {2, 4, 2, 7}, K = 3Output: 1Explanation: Given subarray {2, 4, 2} is a valid array because the elements in even position(index n
    7 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences