Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Maximize sum of subsets from two arrays having no consecutive values
Next article icon

Maximize sum of subsets from two arrays having no consecutive values

Last Updated : 16 Oct, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two arrays arr1[] and arr2[] of equal length, the task is to find the maximum sum of any subset possible by selecting elements from both the arrays such that no two elements in the subset should be consecutive.

Examples:

Input: arr1[] = {-1, -2, 4, -4, 5}, arr2[] = {-1, -2, -3, 4, 10}
Output: 14
Explanation:
Required subset {4, 10}. Therefore, sum = 4 + 10 = 14.

Input: arr1[] = {2, 5, 4, 2000}, arr2[] = {-2000, 100, 23, 40}
Output: 2100

Naive Approach: The simplest approach is to generate all possible subsets from both the given arrays such that no two adjacent elements are consecutive and calculate the sum of each subset. Finally, print the maximum sum possible. 
Time Complexity: O(N*2N)
Auxiliary Space: O(2N)

Efficient Approach: The above approach can be optimized using Dynamic Programming. Follow the steps below to solve the problem:

  • Initialize an auxiliary array dp[] of size N.
  • Here, dp[i] stores the maximum possible sum of a subset from both the arrays such that no two elements are consecutive.
  • Declare a function maximumSubsetSum():
    • Base Cases:
      • dp[1] = max(arr1[1], arr2[1]).
      • dp[2] = max(max(arr1[1], arr2[1]), max(arr1[2], arr2[2])).
    • For all other cases, following three conditions arise:
      • dp[i] = max(arr1[i], arr2[i], arr1[i] + dp[i - 2], arr2[i] + dp[i - 2], dp[i - 1]).
  • Finally, print dp[N] as the required answer.

Below is the implementation of the above approach:

C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std;  // Function to calculate maximum subset sum void maximumSubsetSum(int arr1[],int arr2[], int length) {      // Initialize array to store dp states     int dp[length+1];      // Base Cases     if (length == 1)     {         cout << (max(arr1[0], arr2[0]));         return;     }      if (length == 2)     {         cout << (max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0])));         return;     }     else      {          // Pre initializing for dp[0] & dp[1]         dp[0] = max(arr1[0], arr2[0]);         dp[1] = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]));          int index = 2;         while (index < length)          {              // Calculating dp[index] based on             // above formula             dp[index] = max(max(arr1[index], arr2[index]),                 max(max(arr1[index] + dp[index - 2],                         arr2[index] + dp[index - 2]),                     dp[index - 1]));             ++index;         }          // Print maximum subset sum         cout<<(dp[length - 1]);     } }  // Driver Code int main() {      // Given arrays   int arr1[] = { -1, -2, 4, -4, 5 };   int arr2[] = { -1, -2, -3, 4, 10 };    // Length of the array   int length = 5;   maximumSubsetSum(arr1, arr2, length);   return 0; }  // This code is contributed by mohit kumar 29 
Java
// Java program for the above approach  import java.io.*; import java.util.*; class GFG {      // Function to calculate maximum subset sum     static void maximumSubsetSum(int arr1[],                                  int arr2[],                                  int length)     {          // Initialize array to store dp states         int dp[] = new int[length + 1];          // Base Cases         if (length == 1) {             System.out.print(                 Math.max(arr1[0], arr2[0]));             return;         }          if (length == 2) {             System.out.print(                 Math.max(                     Math.max(arr1[1], arr2[1]),                     Math.max(arr1[0], arr2[0])));             return;         }         else {              // Pre initializing for dp[0] & dp[1]             dp[0] = Math.max(arr1[0], arr2[0]);             dp[1] = Math.max(                 Math.max(arr1[1], arr2[1]),                 Math.max(arr1[0], arr2[0]));              int index = 2;             while (index < length) {                  // Calculating dp[index] based on                 // above formula                 dp[index] = Math.max(                     Math.max(arr1[index], arr2[index]),                     Math.max(                         Math.max(                             arr1[index] + dp[index - 2],                             arr2[index] + dp[index - 2]),                         dp[index - 1]));                 ++index;             }              // Print maximum subset sum             System.out.print(dp[length - 1]);         }     }      // Driver Code     public static void main(String[] args)     {          // Given arrays         int arr1[] = { -1, -2, 4, -4, 5 };         int arr2[] = { -1, -2, -3, 4, 10 };          // Length of the array         int length = arr1.length;          maximumSubsetSum(arr1, arr2, length);     } } 
Python3
# Python program of the above approach  # Function to calculate maximum subset sum def maximumSubsetSum(arr1, arr2, length) :      # Initialize array to store dp states     dp = [0] * (length+1)      # Base Cases     if (length == 1) :               print(max(arr1[0], arr2[0]))         return     if (length == 2) :         print(max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0])))         return       else  :          # Pre initializing for dp[0] & dp[1]         dp[0] = max(arr1[0], arr2[0])         dp[1] = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]))         index = 2         while (index < length) :              # Calculating dp[index] based on             # above formula             dp[index] = max(max(arr1[index], arr2[index]),                 max(max(arr1[index] + dp[index - 2],                         arr2[index] + dp[index - 2]),                     dp[index - 1]))             index += 1                  # Print maximum subset sum         print(dp[length - 1])      # Driver Code  # Given arrays arr1 = [ -1, -2, 4, -4, 5 ] arr2 = [ -1, -2, -3, 4, 10 ]  # Length of the array length = 5 maximumSubsetSum(arr1, arr2, length)  # This code is contributed by susmitakundugoaldanga. 
C#
// C# program for the above approach using System; class GFG {    // Function to calculate maximum subset sum   static void maximumSubsetSum(int[] arr1,                                int[] arr2,                                int length)   {      // Initialize array to store dp states     int[] dp = new int[length + 1];      // Base Cases     if (length == 1) {       Console.WriteLine(Math.Max(arr1[0], arr2[0]));       return;     }      if (length == 2)      {       Console.WriteLine(Math.Max(         Math.Max(arr1[1], arr2[1]),         Math.Max(arr1[0], arr2[0])));       return;     }     else      {        // Pre initializing for dp[0] & dp[1]       dp[0] = Math.Max(arr1[0], arr2[0]);       dp[1] = Math.Max(Math.Max(arr1[1], arr2[1]),                        Math.Max(arr1[0], arr2[0]));        int index = 2;       while (index < length) {          // Calculating dp[index] based on         // above formula         dp[index] = Math.Max(Math.Max(arr1[index], arr2[index]),                              Math.Max(Math.Max(arr1[index] +                                                 dp[index - 2],                                                arr2[index] +                                                 dp[index - 2]),                                       dp[index - 1]));         ++index;       }        // Print maximum subset sum       Console.WriteLine(dp[length - 1]);     }   }    // Driver Code   static public void Main()   {      // Given arrays     int[] arr1 = { -1, -2, 4, -4, 5 };     int[] arr2 = { -1, -2, -3, 4, 10 };      // Length of the array     int length = arr1.Length;      maximumSubsetSum(arr1, arr2, length);   } }  // This code is contributed by code_hunt. 
JavaScript
<script>  // javascript program of the above approach      // Function to calculate maximum subset sum     function maximumSubsetSum(arr1, arr2,length)     {           // Initialize array to store dp states         let dp = new Array(length).fill(0);;           // Base Cases         if (length == 1) {             document.write(                 Math.max(arr1[0], arr2[0]));             return;         }           if (length == 2) {             document.write(                 Math.max(                     Math.max(arr1[1], arr2[1]),                     Math.max(arr1[0], arr2[0])));             return;         }         else {               // Pre initializing for dp[0] & dp[1]             dp[0] = Math.max(arr1[0], arr2[0]);             dp[1] = Math.max(                 Math.max(arr1[1], arr2[1]),                 Math.max(arr1[0], arr2[0]));               let index = 2;             while (index < length) {                   // Calculating dp[index] based on                 // above formula                 dp[index] = Math.max(                     Math.max(arr1[index], arr2[index]),                     Math.max(                         Math.max(                             arr1[index] + dp[index - 2],                             arr2[index] + dp[index - 2]),                         dp[index - 1]));                 ++index;             }               // Print maximum subset sum             document.write(dp[length - 1]);         }     }      // Driver Code          // Given arrays         let arr1 = [ -1, -2, 4, -4, 5 ];         let arr2 = [ -1, -2, -3, 4, 10 ];           // Length of the array         let length = arr1.length;           maximumSubsetSum(arr1, arr2, length);  </script> 

Output
14

Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient approach : Space optimization O(1)

In previous approach we the current value dp[i] is only depend upon the previous 2 values i.e. dp[i-1] and dp[i-2]. So to optimize the space we can keep track of previous and current values by the help of three variables prev1, prev2 and curr which will reduce the space complexity from O(x) to O(1).  

Implementation:

C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std;  // Function to calculate maximum subset sum void maximumSubsetSum(int arr1[],int arr2[], int length) {      // Initialize variables to store dp states     int dp0 = max(arr1[0], arr2[0]);     int dp1 = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]));     int dpi = dp1, dpim2 = dp0;      // Base Cases     if (length == 1)     {         cout << dp0;         return;     }      if (length == 2)     {         cout << dp1;         return;     }     else     {         int index = 2;         while (index < length)         {              // Calculating dp[index] based on above formula             dpi = max(max(arr1[index], arr2[index]),                 max(max(arr1[index] + dpim2,                         arr2[index] + dpim2),                     dp1));             dpim2 = dp1;             dp1 = dpi;             ++index;         }          // Print maximum subset sum         cout<<(dpi);     } }  // Driver Code int main() {      // Given arrays     int arr1[] = { -1, -2, 4, -4, 5 };     int arr2[] = { -1, -2, -3, 4, 10 };      // Length of the array     int length = 5;     maximumSubsetSum(arr1, arr2, length);     return 0; } 
Java
public class GFG {     // Function to calculate maximum subset sum     static void maximumSubsetSum(int[] arr1, int[] arr2, int length) {          // Initialize variables to store dp states         int dp0 = Math.max(arr1[0], arr2[0]);         int dp1 = Math.max(Math.max(arr1[1], arr2[1]), Math.max(arr1[0], arr2[0]));         int dpi = dp1, dpim2 = dp0;          // Base Cases         if (length == 1) {             System.out.println(dp0);             return;         }          if (length == 2) {             System.out.println(dp1);             return;         } else {             int index = 2;             while (index < length) {                  // Calculating dp[index] based on the formula                 dpi = Math.max(Math.max(arr1[index], arr2[index]),                         Math.max(Math.max(arr1[index] + dpim2,                                 arr2[index] + dpim2),                                 dp1));                 dpim2 = dp1;                 dp1 = dpi;                 ++index;             }              // Print maximum subset sum             System.out.println(dpi);         }     }      // Driver Code     public static void main(String[] args) {          // Given arrays         int[] arr1 = { -1, -2, 4, -4, 5 };         int[] arr2 = { -1, -2, -3, 4, 10 };          // Length of the array         int length = 5;         maximumSubsetSum(arr1, arr2, length);     } } 
Python3
def maximumSubsetSum(arr1, arr2, length):     # Initialize variables to store dp states     dp0 = max(arr1[0], arr2[0])     dp1 = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]))     dpi, dpim2 = dp1, dp0      # Base Cases     if length == 1:         print(dp0)         return      if length == 2:         print(dp1)         return     else:         index = 2         while index < length:             # Calculating dpi based on the given formula             dpi = max(                 max(arr1[index], arr2[index]),                 max(                     max(arr1[index] + dpim2, arr2[index] + dpim2),                     dp1                 )             )             dpim2 = dp1             dp1 = dpi             index += 1          # Print maximum subset sum         print(dpi)  # Driver Code if __name__ == "__main__":     # Given arrays     arr1 = [-1, -2, 4, -4, 5]     arr2 = [-1, -2, -3, 4, 10]      # Length of the array     length = 5     maximumSubsetSum(arr1, arr2, length) 
C#
using System;  class Program {     static void MaximumSubsetSum(int[] arr1, int[] arr2, int length)     {            // Initialize variables to store dp states         int dp0 = Math.Max(arr1[0], arr2[0]);         int dp1 = Math.Max(Math.Max(arr1[1], arr2[1]), Math.Max(arr1[0], arr2[0]));         int dpi = dp1, dpim2 = dp0;                  // Base Cases         if (length == 1)         {             Console.Write(dp0);             return;         }          if (length == 2)         {             Console.Write(dp1);             return;         }         else         {             int index = 2;             while (index < length)             {                     // Calculating dp[index] based on above formula                 dpi = Math.Max(Math.Max(arr1[index], arr2[index]),                     Math.Max(Math.Max(arr1[index] + dpim2,                                       arr2[index] + dpim2),                              dp1));                 dpim2 = dp1;                 dp1 = dpi;                 ++index;             }              Console.Write(dpi);         }     }      static void Main(string[] args)     {         int[] arr1 = { -1, -2, 4, -4, 5 };         int[] arr2 = { -1, -2, -3, 4, 10 };         int length = 5;         MaximumSubsetSum(arr1, arr2, length);     } } 
JavaScript
function maximumSubsetSum(arr1, arr2, length) {     // Initialize variables to store dp states     let dp0 = Math.max(arr1[0], arr2[0]);     let dp1 = Math.max(Math.max(arr1[1], arr2[1]), Math.max(arr1[0], arr2[0]));     let dpi = dp1;     let dpim2 = dp0;      // Base Cases     if (length === 1) {         console.log(dp0); // Print the maximum subset sum         return;     }      if (length === 2) {         console.log(dp1); // Print the maximum subset sum         return;     } else {         let index = 2;         while (index < length) {             // Calculate dpi based on the maximum of different cases             dpi = Math.max(                 Math.max(arr1[index], arr2[index]),                 Math.max(                     Math.max(arr1[index] + dpim2, arr2[index] + dpim2),                     dp1                 )             );             dpim2 = dp1;             dp1 = dpi;             index++;         }          console.log(dpi); // Print the maximum subset sum     } }  const arr1 = [-1, -2, 4, -4, 5]; const arr2 = [-1, -2, -3, 4, 10]; const length = 5;  maximumSubsetSum(arr1, arr2, length); 

Output
14

Time Complexity: O(N)
Auxiliary Space: O(1)


Next Article
Maximize sum of subsets from two arrays having no consecutive values

Z

zack_aayush
Improve
Article Tags :
  • Dynamic Programming
  • Backtracking
  • Mathematical
  • Technical Scripter
  • Competitive Programming
  • DSA
  • Arrays
  • Technical Scripter 2020
  • subset
Practice Tags :
  • Arrays
  • Backtracking
  • Dynamic Programming
  • Mathematical
  • subset

Similar Reads

    Maximum sum of Subset having no consecutive elements
    Given an array arr[] of size N, the task is to find the maximum possible sum of a subset of the array such that no two consecutive elements are part of the subset. Examples: Input: arr[]= {2, 3, 2, 3, 3, 4}Output: 9Explanation: The subset having all the 3s i.e. {3, 3, 3} have sum = 9.This is the max
    9 min read
    Maximise the size of consecutive element subsets in an array
    Given an integer array and an integer k. The array elements denote positions of points on a 1-D number line, find the maximum size of the subset of points that can have consecutive values of points which can be formed by placing another k points on the number line. Note that all coordinates should b
    12 min read
    Maximize value of a pair from two given arrays based on given conditions
    Given two arrays A[] and B[] consisting of N integers and an integer K, the task is to find the maximum value of B[i] + B[j] + abs(A[i] - A[j]) by choosing any pair (i, j) such that abs(A[i] - A[j]) ? K. Examples: Input: A[] = {5, 6, 9, 10}, B[] = {3, 0, 10, -10}, K = 1Output: 4Explanation:Only two
    15+ min read
    Maximize sum of selected numbers from Array to empty it | Set 2
    Given an array arr[] of N integers, the task is to maximize the sum of selected numbers over all the operations such that in each operation, choose a number Ai, delete one occurrence of it and delete all occurrences of Ai - 1 and Ai + 1 (if they exist) in the array until the array gets empty. Exampl
    7 min read
    Maximum subsequence sum such that no K elements are consecutive
    Given an array arr[] of N positive integers, the task is to find the maximum sum of a subsequence consisting of no K consecutive array elements. Examples: Input: arr[] = {10, 5, 8, 16, 21}, K = 4Output: 55Explanation:Maximum sum is obtained by picking 10, 8, 16, 21. Input: arr[] = {4, 12, 22, 18, 34
    9 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences