Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Pandas
  • Numpy
  • Seaborn
  • Ploty
  • Data visualization
  • Data Analysis
  • Power BI
  • Tableau
  • Machine Learning
  • Deep Learning
  • NLP
  • Computer Vision
  • Data Science for Beginners
  • Data Science interview questions
  • Data analysis interview questions
  • NLP Interview questions
Open In App
Next Article:
Matplotlib.axes.Axes.plot() in Python
Next article icon

Matplotlib.axes.Axes.properties() in Python

Last Updated : 30 Apr, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.properties() Function

The Axes.properties() function in axes module of matplotlib library is used to get the dictionary of all the properties of the artist..

Syntax: Axes.properties(self)

Parameters: This method does not accepts any parameters.

Returns: This method return dictionary of all the properties of the artist.

Below examples illustrate the matplotlib.axes.Axes.properties() function in matplotlib.axes:

Example 1:




# Implementation of matplotlib function 
import numpy as np 
import matplotlib.pyplot as plt 
      
xx = np.random.rand(16, 30) 
      
fig, ax = plt.subplots() 
      
m = ax.pcolor(xx) 
m.set_zorder(-20)
  
w = ax.properties()
print("Display all Properties\n")
for i in w:
    print(i, ":", w[i])
   
fig.suptitle('matplotlib.axes.Axes.properties()\
 function Example', fontweight ="bold") 
  
plt.show() 
 
 

Output:

Display all Properties

adjustable : box
agg_filter : None
alpha : None
anchor : C
animated : False
aspect : auto
autoscale_on : True
autoscalex_on : True
autoscaley_on : True
axes_locator : None
axisbelow : line
children : [,,,,,,, Text(0.5, 1.0, ”), Text(0.0, 1.0, ”), Text(1.0, 1.0, ”), ]
clip_box : None
clip_on : True
clip_path : None
contains : None
data_ratio : 0.5333333333333333
default_bbox_extra_artists : [,,,,,,, Text(0.5, 1.0, ”), Text(0.0, 1.0, ”), Text(1.0, 1.0, ”), ]
facecolor : (1.0, 1.0, 1.0, 1.0)
fc : (1.0, 1.0, 1.0, 1.0)
figure : Figure(640×480)
frame_on : True
geometry : (1, 1, 1)
gid : None
gridspec : GridSpec(1, 1)
images : <a>
in_layout : True
label :
legend : None
legend_handles_labels : ([], [])
lines : <a>
navigate : True
navigate_mode : None
path_effects : []
picker : None
position : Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88)
rasterization_zorder : None
rasterized : None
renderer_cache : None
shared_x_axes :
shared_y_axes :
sketch_params : None
snap : None
subplotspec :
title :
transform : IdentityTransform()
transformed_clip_path_and_affine : (None, None)
url : None
visible : True
window_extent : TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))
xaxis : XAxis(80.0, 52.8)
xaxis_transform : BlendedGenericTransform(
CompositeGenericTransform(
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=30.0, y1=16.0),
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))
xbound : (0.0, 30.0)
xgridlines : <a>
xlabel :
xlim : (0.0, 30.0)
xmajorticklabels : <a>
xminorticklabels : <a>
xscale : linear
xticklabels : <a>
xticklines : <a>
xticks : [ 0. 5. 10. 15. 20. 25. 30.]
yaxis : YAxis(80.0, 52.8)
yaxis_transform : BlendedGenericTransform(
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))),
CompositeGenericTransform(
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=30.0, y1=16.0),
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))))
ybound : (0.0, 16.0)
ygridlines : <a>
ylabel :
ylim : (0.0, 16.0)
ymajorticklabels : <a>
yminorticklabels : <a>
yscale : linear
yticklabels : <a>
yticklines : <a>
yticks : [ 0. 2. 4. 6. 8. 10. 12. 14. 16.]
zorder : 0

Example 2:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
        
np.random.seed(10**7)
geeks = np.random.randn(100)
   
fig, ax = plt.subplots()
ax.acorr(geeks, usevlines = True,
         normed = True,
         maxlags = 80, lw = 3)
  
ax.grid(True)
  
w = ax.properties()
print("Display all Properties\n")
for i in w:
    print(i, ":", w[i])
   
fig.suptitle('matplotlib.axes.Axes.properties()\
function Example', fontweight ="bold") 
  
plt.show() 
 
 

Output:

Display all Properties

adjustable : box
agg_filter : None
alpha : None
anchor : C
animated : False
aspect : auto
autoscale_on : True
autoscalex_on : True
autoscaley_on : True
axes_locator : None
axisbelow : line
children : [,,,,,,,, Text(0.5, 1.0, ”), Text(0.0, 1.0, ”), Text(1.0, 1.0, ”), ]
clip_box : None
clip_on : True
clip_path : None
contains : None
data_ratio : 0.007741698372824119
default_bbox_extra_artists : [,,,,,,,, Text(0.5, 1.0, ”), Text(0.0, 1.0, ”), Text(1.0, 1.0, ”), ]
facecolor : (1.0, 1.0, 1.0, 1.0)
fc : (1.0, 1.0, 1.0, 1.0)
figure : Figure(640×480)
frame_on : True
geometry : (1, 1, 1)
gid : None
gridspec : GridSpec(1, 1)
images : <a>
in_layout : True
label :
legend : None
legend_handles_labels : ([], [])
lines : <a>
navigate : True
navigate_mode : None
path_effects : []
picker : None
position : Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88)
rasterization_zorder : None
rasterized : None
renderer_cache : None
shared_x_axes :
shared_y_axes :
sketch_params : None
snap : None
subplotspec :
title :
transform : IdentityTransform()
transformed_clip_path_and_affine : (None, None)
url : None
visible : True
window_extent : TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))
xaxis : XAxis(80.0, 52.8)
xaxis_transform : BlendedGenericTransform(
CompositeGenericTransform(
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom(
TransformedBbox(
Bbox(x0=-88.0, y0=-0.300605326634452, x1=88.0, y1=1.061933586982593),
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))
xbound : (-88.0, 88.0)
xgridlines : <a>
xlabel :
xlim : (-88.0, 88.0)
xmajorticklabels : <a>
xminorticklabels : <a>
xscale : linear
xticklabels : <a>
xticklines : <a>
xticks : [-100. -80. -60. -40. -20. 0. 20. 40. 60. 80. 100.]
yaxis : YAxis(80.0, 52.8)
yaxis_transform : BlendedGenericTransform(
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))),
CompositeGenericTransform(
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom(
TransformedBbox(
Bbox(x0=-88.0, y0=-0.300605326634452, x1=88.0, y1=1.061933586982593),
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))))
ybound : (-0.300605326634452, 1.061933586982593)
ygridlines : <a>
ylabel :
ylim : (-0.300605326634452, 1.061933586982593)
ymajorticklabels : <a>
yminorticklabels : <a>
yscale : linear
yticklabels : <a>
yticklines : <a>
yticks : [-0.4 -0.2 0. 0.2 0.4 0.6 0.8 1. 1.2]
zorder : 0



Next Article
Matplotlib.axes.Axes.plot() in Python

S

SHUBHAMSINGH10
Improve
Article Tags :
  • Python
  • Matplotlib axes-class
  • Python-matplotlib
Practice Tags :
  • python

Similar Reads

  • Matplotlib.axes.Axes.plot() in Python
    Axes.plot() method in Matplotlib is used to plot data on a set of axes. It is primarily used for creating line plots but can be extended for other types of plots, including scatter plots, bar plots, and more. When using this function, you typically provide the x and y coordinates of the data points
    3 min read
  • Matplotlib.axes.Axes.psd() in Python
    Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
    3 min read
  • Matplotlib.axes.Axes.pcolor() in Python
    Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
    2 min read
  • Matplotlib.axis.Axis.properties() function in Python
    Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.  matplotlib.axis.Axis.properties() Function The Axis.properties() function in a
    6 min read
  • Matplotlib.artist.Artist.properties() in Python
    Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Artist class contains Abstract base class for objects that render into a FigureCanvas. All visible elements in a figure are subclasses of Artist. matplotlib.artist.Artist.properties() method The pro
    7 min read
  • Matplotlib.axes.Axes.minorticks_on() in Python
    Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
    2 min read
  • Matplotlib.axes.Axes.pcolorfast() in Python
    Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
    2 min read
  • Matplotlib.axes.Axes.matshow() in Python
    Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
    2 min read
  • Matplotlib.axes.Axes.plot_date() in Python
    Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
    2 min read
  • Matplotlib.axes.Axes.get_position() in Python
    Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences