Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • DSA
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps
    • Software and Tools
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Go Premium
  • Number System and Arithmetic
  • Algebra
  • Set Theory
  • Probability
  • Statistics
  • Geometry
  • Calculus
  • Logarithms
  • Mensuration
  • Matrices
  • Trigonometry
  • Mathematics
Open In App

Parallelogram | Properties, Formulas, Types, and Theorem

Last Updated : 23 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

A parallelogram is a two-dimensional geometrical shape whose opposite sides are equal in length and are parallel. The opposite angles of a parallelogram are equal in measure and the Sum of adjacent angles of a parallelogram is equal to 180 degrees.

A parallelogram is a four-sided polygon (quadrilateral) and, it has the following key properties:

  1. Opposite Sides are Parallel and Equal: The two pairs of opposite sides are both parallel and have equal lengths, i.e., AB = CD and BC = AD.
  2. Opposite Angles are Congruent: Opposite angles are equal, meaning ∠A = ∠C and ∠B = ∠D.
  3. Right Angles Form a Rectangle: If one angle is 90°, all angles will be 90°, making it a rectangle.
  4. Diagonals Bisect Each Other: The diagonals cut each other into two equal halves.
  5. Consecutive Angles are Supplementary: Any two consecutive angles add up to 180°, i.e., ∠A + ∠B = 180°

Below is the diagram of a parallelogram ABCD having adjacent sides 'a' and 'b' and height 'h'.

Diagram of a parallelogram
Diagram of a parallelogram

Also Read:

  • Quadrilateral
  • Properties of parallelogram

Types of Parallelogram

There are mainly four types of parallelograms, based on their properties.

  • Rectangle
  • Square
  • Rhombus
  • Rhomboid

Rectangle

A rectangle is a parallelogram with two pairs of equal and parallel opposite sides, along with four right angles.

Observe the rectangle ABCD and associate it with the following properties,

  1. Two pairs of parallel sides. Here AB || DC and AD || BC
  2. Four right angles ∠A = ∠B = ∠C = ∠D = 90°.
  3. The opposite sides are the same length, where AB = DC and AD = BC.
  4. Two equal diagonals where AC = BD.
  5. Diagonals that bisect each other.

Read in Detail: Rectangle

Rectangle Definition
Diagram of a Rectangle

Square

A square is a parallelogram with four equal sides and four equal angles.

Observe the square ACDB and associate it with the following properties:

  1. Four equal sides are AB = BC = CD = DA.
  2. Right angles are ∠A = ∠B = ∠C = ∠D = 90°.
  3. There are two pairs of parallel sides. Here AB || DC and AD || BC.
  4. Two identical diagonals where AD = BC.
  5. Diagonals are perpendicular and bisect each other; AD is perpendicular to BC.

Read in Detail: The perimeterSquare.

Square Definition
Diagram of a Square

Rhombus

A parallelogram with four equal sides and equal opposite angles is called a rhombus. Consider the diamond ABCD and assign it the following attributes, 

  1. In the given figure, the four equal sides are AB = CD = BC = AD. 
  2. The two pairs of parallel sides are AB || CD and BC || AD. 
  3. The equal opposite angles are ∠A = ∠B and ∠C = ∠D. 
  4. Here, the diagonals (AC and BD) are perpendicular to each other and bisect at right angles.

Read in Detail: Rhombus.

Rhombus Definition
Diagram of a Rhombus

Rhomboid

A rhomboid is a quadrilateral with opposite sides that are parallel and equal in length, but angles are not necessarily right angles. Consider the rhomboid ABCD with the following attributes:

  • The equal opposite sides are AB = CD and BC = AD.
  • The two pairs of parallel sides are AB ∥ CD and BC ∥ AD.
  • The opposite angles are equal: ∠A = ∠C and ∠B = ∠D.
  • The diagonals (AC and BD) bisect each other but are not perpendicular.

Read in Detail: Rhomboid

Rhomboid
RHomboid

Parallelogram Formulas | Area and Perimeter

All 2D shapes have two basic formulas for area and perimeter. Parallelogram is a basic 2-dimensional figure which is widely used in mathematics.

All the formulas on parallelogram can be subdivided into two parts:

  • Area
  • Perimeter

Area of Parallelogram

The area of ​​a parallelogram is the space covered between its four sides. It can be calculated by knowing the length of the base and the height of the parallelogram and measuring it in square units such as cm2, m2, or inch2.

Consider a parallelogram ABCD with a base (b) and a height (h).
Then, the area of ​​a parallelogram is calculated by the formula:

Area of Parallelogram = base (b) × height (h)

Area of Parallelogram without Height

When the height of the parallelogram is not known, the area can still be found, provided the angle is known to us.

The formula for the area of a parallelogram without height is given as:

Parallelogram area = ab Sinθ

Where a and b are the sides of the parallelogram and θ is the angle between them.

The perimeter of Parallelogram

Perimeter of a parallelogram is the length of its boundary, so it is equal to the sum of all sides.

In a parallelogram, the opposite sides are equal. Let's say the sides are a and b. Then, the perimeter (P) of the parallelogram with edges is in units of P = 2 (a + b).

Perimeter of Parallelogram = 2 (a + b)

Formulas Table

Property/FormulaFormula/Description
Area (A)A = b × h
Perimeter (P)P = 2(a + b)
Base (b)Length of the base side.
Height (h)Length of the perpendicular height from base to opposite side.
Length of Sidesa, ba, ba,b are the lengths of the adjacent sides.
Diagonal Lengthsd1 = \sqrt{a^2 + b^2 + 2ab\space cos(\theta)}

d2 = \sqrt{a^2 + b^2 - 2ab\space cos(\theta)}

AnglesOpposite angles are equal: ∠A = ∠C
Adjacent angles are supplementary: ∠A + ∠B = 180∘
Relationship Between Sides and Anglesa sin⁡(∠B) = b sin⁡(∠A)
Area using diagonals

A = \frac{1}{2} \times d_1 \times d_2 \times \sin(\theta)

Circumradius (R)R = \frac{d_1 \times d_2}{2A}
Inradius (r)r = A/P

Parallelogram Theorem

Let's understand the theorem on parallelograms and how to prove it.

Theorem:Parallelograms on the same base and between the same parallels are equal in area.

To Prove: Area of parallelogram ABCD = Area of parallelogram ABEF

Proof: Let's assume two parallelograms ABCD and ABEF with the same base DC and between the same parallel lines AB and FC

In the figure given below, the two parallelograms, ABCD and ABEF, lie between the same parallel lines and have the same base. Area ABDE is common between them.

Taking a closer look at the two triangles, △BCD and △AEF might be congruent. 

Parallelogram Theorem
Parallelogram Theorem

BC = AE (Opposite sides of a parallelogram), 

∠BCD = ∠AEF (These are corresponding angles because BC || AE and CE are the transversal).

∠BDC = ∠AFE (These are corresponding angles because BD || AF and FD are the transversals).

Thus, by the ASA criterion of congruent triangles. These two triangles are congruent, and they must have equal areas. 

area(BCD) = area(AEF)

area(BCD) + area(ABDE) = area(AEF) + area(ABDE) 

area(ABCD) = area(ABEF) 

Hence, parallelograms lying between the same parallel lines and having a common base have equal areas. 

Difference Between Parallelogram and Rectangle

Rectangle and parallelogram are both quadrilaterals. All rectangles are parallelograms as they have all the properties of a parallelogram and more but all parallelograms are not rectangles.

Here we have tabulated some of the basic differences between their properties:

    Properties      

Parallelogram

Rectangle

SidesThe opposite sides of a parallelogram are equal.The opposite sides of a rectangle are equal.
Diagonals The diagonals of a parallelogram bisect each other, but the diagonals are not equal.The diagonals of a rectangle bisect each other, and the diagonals are equal to each other as well.
AnglesThe opposite angles of a parallelogram are equal, and the adjacent angles are supplementary.All the angles of a rectangle are equal to each other and equal to 90°.

Also Check,

  • Area of a Triangle
  • Area of a Square
  • Area of Rectangle

Real-life examples of a Parallelogram

Various examples of parallelograms as observed in our daily life include:

  • We come across various things in our daily life that resembles a parallelogram such as a computer screen, books, buildings, and tiles all are considered to be in a parallelogram shape.
  • The parallelogram is the most common shape which we encounter daily.
  • Rectangle and square both can be considered a parallelogram and are easily seen in our daily lives.

Solved Examples on Parallelogram

Example 1: Find the length of the other side of a parallelogram with a base of 12 cm and a perimeter of 60 cm.
Solution:

Given perimeter of a parallelogram = 60cm.
Base length of given parallelogram = 12 cm. 
P = 2 (a + b) units 

Where b = 12cm and P = 40cm.
60 = 2 (a + 12)
60 = 2a + 24
2a = 60 - 24
2a = 36
a = 18cm

Therefore, the length of the other side of the parallelogram is 18 cm. 

Example 2: Find the perimeter of a parallelogram with the base and side lengths of 15cm and 5cm, respectively.
Solution:

Base length of given parallelogram = 15 cm
Side length of given parallelogram = 5 cm

Perimeter of a parallelogram is given by,
P = 2(a + b) units.

Putting the values, we get
P = 2(15 + 5)
P = 2(20)
P = 40 cm

Therefore, the perimeter of a parallelogram will be 40 cm.

Example 3: The angle between two sides of a parallelogram is 90°. If the lengths of two parallel sides are 5 cm and 4 cm, respectively, find the area.

Parallelogram Solved Example

Solution:

If one angle of the parallelogram is 90°. Then, the rest of the angles are also 90°. Therefore, the parallelogram becomes a rectangle. The area of the rectangle is length times breadth.
Area of parallelogram = 5 × 4
Area of parallelogram = 20cm2

Example 4: Find the area of a parallelogram when the diagonals are given as 8 cm, and 10 cm, the angle between the diagonals is 60°.
Solution:

In order to find the area of the parallelogram, the base and height should be known, lets's first find the base of the parallelogram, applying the law of cosines,

b2 = 42 + 52 - 2(5)(4)cos(120°)
b2 = 16 + 25 - 40(0.8)
b2 = 9
b = 3cm 

Finding the height of the parallelogram,

Parallelogram Solved Example

4/sinθ = b/sin120
4/sinθ = 3/-0.58
sinθ = -0.773
θ = 50°

Now, to find the height,

Sinθ = h/10
0.76 = h/10
h = 7.6cm

Area of the parallelogram = 1/2 × 3 × 7.6 = 11.4 cm2


P

prachikathuria09
Improve
Article Tags :
  • Mathematics
  • School Learning
  • Maths MAQ
  • Mensuration 2D
  • Maths-Formulas

Similar Reads

    Maths
    Mathematics, often referred to as "math" for short. It is the study of numbers, quantities, shapes, structures, patterns, and relationships. It is a fundamental subject that explores the logical reasoning and systematic approach to solving problems. Mathematics is used extensively in various fields
    5 min read

    Basic Arithmetic

    What are Numbers?
    Numbers are symbols we use to count, measure, and describe things. They are everywhere in our daily lives and help us understand and organize the world.Numbers are like tools that help us:Count how many things there are (e.g., 1 apple, 3 pencils).Measure things (e.g., 5 meters, 10 kilograms).Show or
    15+ min read
    Arithmetic Operations
    Arithmetic Operations are the basic mathematical operations—Addition, Subtraction, Multiplication, and Division—used for calculations. These operations form the foundation of mathematics and are essential in daily life, such as sharing items, calculating bills, solving time and work problems, and in
    9 min read
    Fractions - Definition, Types and Examples
    Fractions are numerical expressions used to represent parts of a whole or ratios between quantities. They consist of a numerator (the top number), indicating how many parts are considered, and a denominator (the bottom number), showing the total number of equal parts the whole is divided into. For E
    7 min read
    What are Decimals?
    Decimals are numbers that use a decimal point to separate the whole number part from the fractional part. This system helps represent values between whole numbers, making it easier to express and measure smaller quantities. Each digit after the decimal point represents a specific place value, like t
    10 min read
    Exponents
    Exponents are a way to show that a number (base) is multiplied by itself many times. It's written as a small number (called the exponent) to the top right of the base number.Think of exponents as a shortcut for repeated multiplication:23 means 2 x 2 x 2 = 8 52 means 5 x 5 = 25So instead of writing t
    9 min read
    Percentage
    In mathematics, a percentage is a figure or ratio that signifies a fraction out of 100, i.e., A fraction whose denominator is 100 is called a Percent. In all the fractions where the denominator is 100, we can remove the denominator and put the % sign.For example, the fraction 23/100 can be written a
    5 min read

    Algebra

    Variable in Maths
    A variable is like a placeholder or a box that can hold different values. In math, it's often represented by a letter, like x or y. The value of a variable can change depending on the situation. For example, if you have the equation y = 2x + 3, the value of y depends on the value of x. So, if you ch
    5 min read
    Polynomials| Degree | Types | Properties and Examples
    Polynomials are mathematical expressions made up of variables (often represented by letters like x, y, etc.), constants (like numbers), and exponents (which are non-negative integers). These expressions are combined using addition, subtraction, and multiplication operations.A polynomial can have one
    9 min read
    Coefficient
    A coefficient is a number that multiplies a variable in a mathematical expression. It tells you how much of that variable you have. For example, in the term 5x, the coefficient is 5 — it means 5 times the variable x.Coefficients can be positive, negative, or zero. Algebraic EquationA coefficient is
    8 min read
    Algebraic Identities
    Algebraic Identities are fundamental equations in algebra where the left-hand side of the equation is always equal to the right-hand side, regardless of the values of the variables involved. These identities play a crucial role in simplifying algebraic computations and are essential for solving vari
    14 min read
    Properties of Algebraic Operations
    Algebraic operations are mathematical processes that involve the manipulation of numbers, variables, and symbols to produce new results or expressions. The basic algebraic operations are:Addition ( + ): The process of combining two or more numbers to get a sum. For example, 3 + 5 = 8.Subtraction (−)
    3 min read

    Geometry

    Lines and Angles
    Lines and Angles are the basic terms used in geometry. They provide a base for understanding all the concepts of geometry. We define a line as a 1-D figure that can be extended to infinity in opposite directions, whereas an angle is defined as the opening created by joining two or more lines. An ang
    9 min read
    Geometric Shapes in Maths
    Geometric shapes are mathematical figures that represent the forms of objects in the real world. These shapes have defined boundaries, angles, and surfaces, and are fundamental to understanding geometry. Geometric shapes can be categorized into two main types based on their dimensions:2D Shapes (Two
    2 min read
    Area and Perimeter of Shapes | Formula and Examples
    Area and Perimeter are the two fundamental properties related to 2-dimensional shapes. Defining the size of the shape and the length of its boundary. By learning about the areas of 2D shapes, we can easily determine the surface areas of 3D bodies and the perimeter helps us to calculate the length of
    10 min read
    Surface Areas and Volumes
    Surface Area and Volume are two fundamental properties of a three-dimensional (3D) shape that help us understand and measure the space they occupy and their outer surfaces.Knowing how to determine surface area and volumes can be incredibly practical and handy in cases where you want to calculate the
    10 min read
    Points, Lines and Planes
    Points, Lines, and Planes are basic terms used in Geometry that have a specific meaning and are used to define the basis of geometry. We define a point as a location in 3-D or 2-D space that is represented using coordinates. We define a line as a geometrical figure that is extended in both direction
    14 min read
    Coordinate Axes and Coordinate Planes in 3D space
    In a plane, we know that we need two mutually perpendicular lines to locate the position of a point. These lines are called coordinate axes of the plane and the plane is usually called the Cartesian plane. But in real life, we do not have such a plane. In real life, we need some extra information su
    6 min read

    Trigonometry & Vector Algebra

    Trigonometric Ratios
    There are three sides of a triangle Hypotenuse, Adjacent, and Opposite. The ratios between these sides based on the angle between them is called Trigonometric Ratio. The six trigonometric ratios are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (cosec), and secant (sec).As give
    4 min read
    Trigonometric Equations | Definition, Examples & How to Solve
    Trigonometric equations are mathematical expressions that involve trigonometric functions (such as sine, cosine, tangent, etc.) and are set equal to a value. The goal is to find the values of the variable (usually an angle) that satisfy the equation.For example, a simple trigonometric equation might
    9 min read
    Trigonometric Identities
    Trigonometric identities play an important role in simplifying expressions and solving equations involving trigonometric functions. These identities, which include relationships between angles and sides of triangles, are widely used in fields like geometry, engineering, and physics. Some important t
    10 min read
    Trigonometric Functions
    Trigonometric Functions, often simply called trig functions, are mathematical functions that relate the angles of a right triangle to the ratios of the lengths of its sides.Trigonometric functions are the basic functions used in trigonometry and they are used for solving various types of problems in
    6 min read
    Inverse Trigonometric Functions | Definition, Formula, Types and Examples
    Inverse trigonometric functions are the inverse functions of basic trigonometric functions. In mathematics, inverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. The inverse trigonometric functions are the inverse functions of basic trigonometric function
    11 min read
    Inverse Trigonometric Identities
    Inverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. These functions are the inverse functions of basic trigonometric functions, i.e., sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio. Inv
    9 min read

    Calculus

    Introduction to Differential Calculus
    Differential calculus is a branch of calculus that deals with the study of rates of change of functions and the behaviour of these functions in response to infinitesimal changes in their independent variables.Some of the prerequisites for Differential Calculus include:Independent and Dependent Varia
    6 min read
    Limits in Calculus
    In mathematics, a limit is a fundamental concept that describes the behaviour of a function or sequence as its input approaches a particular value. Limits are used in calculus to define derivatives, continuity, and integrals, and they are defined as the approaching value of the function with the inp
    12 min read
    Continuity of Functions
    Continuity of functions is an important unit of Calculus as it forms the base and it helps us further to prove whether a function is differentiable or not. A continuous function is a function which when drawn on a paper does not have a break. The continuity can also be proved using the concept of li
    13 min read
    Differentiation
    Differentiation in mathematics refers to the process of finding the derivative of a function, which involves determining the rate of change of a function with respect to its variables.In simple terms, it is a way of finding how things change. Imagine you're driving a car and looking at how your spee
    2 min read
    Differentiability of a Function | Class 12 Maths
    Continuity or continuous which means, "a function is continuous at its domain if its graph is a curve without breaks or jumps". A function is continuous at a point in its domain if its graph does not have breaks or jumps in the immediate neighborhood of the point. Continuity at a Point: A function f
    11 min read
    Integration
    Integration, in simple terms, is a way to add up small pieces to find the total of something, especially when those pieces are changing or not uniform.Imagine you have a car driving along a road, and its speed changes over time. At some moments, it's going faster; at other moments, it's slower. If y
    3 min read

    Probability and Statistics

    Basic Concepts of Probability
    Probability is defined as the likelihood of the occurrence of any event. It is expressed as a number between 0 and 1, where 0 is the probability of an impossible event and 1 is the probability of a sure event.Concepts of Probability are used in various real life scenarios : Stock Market : Investors
    7 min read
    Bayes' Theorem
    Bayes' Theorem is a mathematical formula used to determine the conditional probability of an event based on prior knowledge and new evidence. It adjusts probabilities when new information comes in and helps make better decisions in uncertain situations.Bayes' Theorem helps us update probabilities ba
    13 min read
    Probability Distribution - Function, Formula, Table
    A probability distribution is a mathematical function or rule that describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment.While a Frequency Distribution shows
    13 min read
    Descriptive Statistic
    Statistics is the foundation of data science. Descriptive statistics are simple tools that help us understand and summarize data. They show the basic features of a dataset, like the average, highest and lowest values and how spread out the numbers are. It's the first step in making sense of informat
    5 min read
    What is Inferential Statistics?
    Inferential statistics is an important tool that allows us to make predictions and conclusions about a population based on sample data. Unlike descriptive statistics, which only summarize data, inferential statistics let us test hypotheses, make estimates, and measure the uncertainty about our predi
    7 min read
    Measures of Central Tendency in Statistics
    Central tendencies in statistics are numerical values that represent the middle or typical value of a dataset. Also known as averages, they provide a summary of the entire data, making it easier to understand the overall pattern or behavior. These values are useful because they capture the essence o
    11 min read
    Set Theory
    Set theory is a branch of mathematics that deals with collections of objects, called sets. A set is simply a collection of distinct elements, such as numbers, letters, or even everyday objects, that share a common property or rule.Example of SetsSome examples of sets include:A set of fruits: {apple,
    3 min read

    Practice

    NCERT Solutions for Class 8 to 12
    The NCERT Solutions are designed to help the students build a strong foundation and gain a better understanding of each and every question they attempt. This article provides updated NCERT Solutions for Classes 8 to 12 in all subjects for the new academic session 2023-24. The solutions are carefully
    7 min read
    RD Sharma Class 8 Solutions for Maths: Chapter Wise PDF
    RD Sharma Class 8 Math is one of the best Mathematics book. It has thousands of questions on each topics organized for students to practice. RD Sharma Class 8 Solutions covers different types of questions with varying difficulty levels. The solutions provided by GeeksforGeeks help to practice the qu
    5 min read
    RD Sharma Class 9 Solutions
    RD Sharma Solutions for class 9 provides vast knowledge about the concepts through the chapter-wise solutions. These solutions help to solve problems of higher difficulty and to ensure students have a good practice of all types of questions that can be framed in the examination. Referring to the sol
    10 min read
    RD Sharma Class 10 Solutions
    RD Sharma Class 10 Solutions offer excellent reference material for students, enabling them to develop a firm understanding of the concepts covered. in each chapter of the textbook. As Class 10 mathematics is categorized into various crucial topics such as Algebra, Geometry, and Trigonometry, which
    9 min read
    RD Sharma Class 11 Solutions for Maths
    RD Sharma Solutions for Class 11 covers different types of questions with varying difficulty levels. Practising these questions with solutions may ensure that students can do a good practice of all types of questions that can be framed in the examination. This ensures that they excel in their final
    13 min read
    RD Sharma Class 12 Solutions for Maths
    RD Sharma Solutions for class 12 provide solutions to a wide range of questions with a varying difficulty level. With the help of numerous sums and examples, it helps the student to understand and clear the chapter thoroughly. Solving the given questions inside each chapter of RD Sharma will allow t
    13 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Campus Training Program
  • Explore
  • POTD
  • Job-A-Thon
  • Community
  • Videos
  • Blogs
  • Nation Skill Up
  • Tutorials
  • Programming Languages
  • DSA
  • Web Technology
  • AI, ML & Data Science
  • DevOps
  • CS Core Subjects
  • Interview Preparation
  • GATE
  • Software and Tools
  • Courses
  • IBM Certification
  • DSA and Placements
  • Web Development
  • Programming Languages
  • DevOps & Cloud
  • GATE
  • Trending Technologies
  • Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
  • Preparation Corner
  • Aptitude
  • Puzzles
  • GfG 160
  • DSA 360
  • System Design
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences