Equivalent Version of Euclid’s Fifth Postulate
Last Updated : 18 Mar, 2021
Geometry has originated from a variety of civilizations. Almost every major civilization has studied and used geometry in its prime. Egyptian and Indian civilizations were more focused on using geometry as a tool. Euclid came and changed the way people used to think in geometry. Instead of making it a tool, he thought of geometry as an abstract model of the world in which he lived in.
Euclidean Geometry
According to Euclid,
“A solid has shape, size, position, and can be moved from one place to another. Its boundaries are called surfaces. They separate one part of the space from another and are said to have no thickness. The boundaries of the surfaces are curved or straight lines. These lines end in points.”
Starting from these definitions, he assumed certain properties which were not to be proved. They were termed as “Obvious Universal Truth”. He divided them into two types,
- Postulate: They are assumptions specific to geometry.
- Axiom: They are usually common notions.
Let's quickly look at the axioms of Euclid.
- Things which are equal to the same thing are equal to one another.
- If equals are added to equals, the wholes are equal.
- If equals are subtracted from equals, the remainders are equal.
- Things which coincide with one another are equal to one another.
- The whole is greater than the part.
- Things which are double of the same things are equal to one another.
- Things which are halves of the same things are equal to one another.
Most of these axioms are self-explanatory.
Postulates of Euclid
Postulate 1: A straight line may be drawn from any point to any other point.
Postulate 2: Given two distinct points, there is a unique line that passes through them.
Postulate 2: A terminated line can be produced indefinitely.
Postulate 3: A circle can be drawn with any centre and any radius.
Postulate 4: All right angles are equal to one another.
Postulate 5: If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the sum of angles is less than two right angles.
Most of these postulates are pretty simple and straightforward to think about except the postulate 5. Let's look at its explanations and its equivalent versions in detail.
Equivalent Versions of Fifth Postulate
The fifth postulate states that,
"If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the sum of angles is less than two right angles."
This postulate holds a significant place in the history of mathematics.
We can see in the figure that both the interior angles are less than 90°. So, their sum must be less than 180°. So, when they are extended they intersect at a particular point. This won't happen if the internal angles are 90° or greater than 90°
There are more than one equivalent versions of this postulate, one of them is called Playfair's Axiom.
Playfair's Axiom
"For every line "l" and for every point "P" lying not on "l", there exists a unique line "m" passing through P and parallel to "l".
From the above figure, we can see that there are multiple lines that pass through P but there is only one single line that passes through it and is parallel to "l".
We can also rewrite this statement in another form,
“Two distinct intersecting lines cannot be parallel to the same line.”
Note (Fact): Euclid did not require the fifth postulate to prove his first 28 theorems. Many mathematicians including Euclid were convinced that the fifth postulate is actually a theorem that can not be proved. Several attempts were made but no one was able to prove the fifth postulate.
Sample Problems
Let's see some examples regarding these postulates and axioms,
Question 1: Harsh's salary equal to Ram's salary. Due to the Covid-19 recession, Harsh and Ram's salaries are made half. The final salary of Ram will still be equal to Harsh. This is as per
- 1st Axiom.
- 7th Axiom.
- 6th Axiom.
- 2nd Axiom.
Answer:
7th Axiom states that,
"Things which are halves of the same things are equal to one another."
This axiom can be applied here directly. Thus, the answer is (2).
Question 2: Boundaries of Solids are:
- Lines
- Points
- Surface
- Curves
Answer:
According to Euclid's definition,
"A solid has shape, size, position, and can be moved from one place to another. Its boundaries are called surfaces. They separate one part of the space from another, and are said to have no thickness. The boundaries of the surfaces are curves or straight lines. These lines end in points."
This definition states that boundaries of solids are called surfaces.
Thus answer is (3).
Question 3: In the figure given below, the line-segment has PS = RQ. Prove that PR = SQ.
Answer:
Given that PS = RQ
From the figure we can say,
PS = PR + RS
QR = RS + SQ
From the Euclid axiom number 3 stated above, we know that
"If equals are subtracted from equals, the remainders are also equal."
Since, PS = QR
Subtracting RS from both sides.
⇒ PS - RS = QR - RS
⇒ PR = QS
Question 4: It is known that a + b = 18, and a = c. Prove that c + b = 18.
Answer:
It is known by the Euclid axioms studied above,
"If equals are added to equals, the wholes are equal."
The given equations are,
a + b = 18 ..... (1),
And a = c..... (2)
From the equations (1) and (2), we get.
a + b = c + b ....(3)
Now from equation (1) and equation (3).
We can conclude that
b + c = 18.
Question 5: It is known a + b = 11, then a + b + c = 11 + c. The Euclid axioms that illustrates this statement is,
- 1st axiom.
- 3rd axiom
- 4th axiom
- 2nd axiom
Answer:
The second axiom of Euclid stated above states that,
“If equals are added to equals, the wholes are equal.”
This axiom can be applied here. So, the answer is (4).
Similar Reads
CBSE Class 9 Maths Revision Notes CBSE Class 9th Maths Revision Notes is an important phase of studentâs life when theyâre at a turning point in their life. The reason being class 9 is the foundation level to succeed in class 10. As you know, students must complete Class 9 in order to sit for Class 10 board examinations. Also, it la
15+ min read
Chapter 1: Number System
Number System in MathsNumber System is a method of representing numbers with the help of a set of symbols and rules; it is a mathematical notation used to represent quantities or values in various forms. The number system allows us to perform arithmetic operations and represent numbers consistently and understandably.The
14 min read
Natural Numbers | Definition, Examples & PropertiesNatural numbers are the numbers that start from 1 and end at infinity. In other words, natural numbers are counting numbers and they do not include 0 or any negative or fractional numbers.Here, we will discuss the definition of natural numbers, the types and properties of natural numbers, as well as
11 min read
Whole Numbers - Definition, Properties and ExamplesWhole numbers are the set of natural numbers (1, 2, 3, 4, 5, ...) plus zero. They do not include negative numbers, fractions, or decimals. Whole numbers range from zero to infinity. Natural numbers are a subset of whole numbers, and whole numbers are a subset of real numbers. Therefore, all natural
10 min read
Prime Numbers | Meaning | List 1 to 100 | ExamplesPrime numbers are those natural numbers that are divisible by only 1 and the number itself. Numbers that have more than two divisors are called composite numbers All primes are odd, except for 2.Here, we will discuss prime numbers, the list of prime numbers from 1 to 100, various methods to find pri
12 min read
Rational NumbersRational numbers are a fundamental concept in mathematics, defined as numbers that can be expressed as the ratio of two integers, where the denominator is not zero. Represented in the form p/qâ (with p and q being integers), rational numbers include fractions, whole numbers, and terminating or repea
15+ min read
Irrational Numbers- Definition, Examples, Symbol, PropertiesIrrational numbers are real numbers that cannot be expressed as fractions. Irrational Numbers can not be expressed in the form of p/q, where p and q are integers and q â 0.They are non-recurring, non-terminating, and non-repeating decimals. Irrational numbers are real numbers but are different from
12 min read
Real NumbersReal Numbers are continuous quantities that can represent a distance along a line, as Real numbers include both rational and irrational numbers. Rational numbers occupy the points at some finite distance and irrational numbers fill the gap between them, making them together to complete the real line
10 min read
Decimal Expansion of Real NumbersThe combination of a set of rational and irrational numbers is called real numbers. All the real numbers can be expressed on the number line. The numbers other than real numbers that cannot be represented on the number line are called imaginary numbers (unreal numbers). They are used to represent co
6 min read
Decimal Expansions of Rational NumbersReal numbers are simply the combination of rational and irrational numbers, in the number system. In general, all the arithmetic operations can be performed on these numbers and they can be represented in the number line, also. So in this article let's discuss some rational and irrational numbers an
6 min read
Representation of Rational Numbers on the Number Line | Class 8 MathsRational numbers are the integers p and q expressed in the form of p/q where q>0. Rational numbers can be positive, negative or even zero. Rational numbers can be depicted on the number line. The centre of the number line is called Origin (O). Positive rational numbers are illustrated on the righ
5 min read
Operations on Real NumbersReal Numbers are those numbers that are a combination of rational numbers and irrational numbers in the number system of maths. Real Number Operations include all the arithmetic operations like addition, subtraction, multiplication, etc. that can be performed on these numbers. Besides, imaginary num
9 min read
Rationalization of DenominatorsRationalization of Denomintors is a method where we change the fraction with an irrational denominator into a fraction with a rational denominator. If there is an irrational or radical in the denominator the definition of rational number ceases to exist as we can't divide anything into irrational pa
8 min read
Nth RootNth root of unity is the root of unity when taken which on taking to the power n gives the value 1. Nth root of any number is defined as the number that takes to the power of n results in the original number. For example, if we take the nth root of any number, say b, the result is a, and then a is r
6 min read
Laws of Exponents for Real NumbersLaws of Exponents are fundamental rules used in mathematics to simplify expressions involving exponents. These laws help in solving arithmetic problems efficiently by defining operations like multiplication, division, and more on exponents. In this article, we will discuss the laws of exponent for r
6 min read
Chapter 2: Polynomials
Polynomials in One Variable | Polynomials Class 9 MathsPolynomials in One Variable: Polynomial word originated from two words âpolyâ which means âmanyâ and the word ânominalâ which means âtermâ. In maths, a polynomial expression consists of variables known as indeterminate and coefficients. Polynomials are expressions with one or more terms with a non-z
7 min read
Polynomial FormulaThe polynomial Formula gives the standard form of polynomial expressions. It specifies the arrangement of algebraic expressions according to their increasing or decreasing power of variables. The General Formula of a Polynomial:f(x) = anâxn + anâ1âxnâ1 + ⯠+ a1âx + a0âWhere,anâ, anâ1â, â¦, a1â, a0â a
5 min read
Types of Polynomials (Based on Terms and Degrees)Types of Polynomials: In mathematics, an algebraic expression is an expression built up from integer constants, variables, and algebraic operations. There are mainly four types of polynomials based on degree-constant polynomial (zero degree), linear polynomial ( 1st degree), quadratic polynomial (2n
9 min read
Zeros of PolynomialZeros of a Polynomial are those real, imaginary, or complex values when put in the polynomial instead of a variable, the result becomes zero (as the name suggests zero as well). Polynomials are used to model some physical phenomena happening in real life, they are very useful in describing situation
13 min read
Factorization of PolynomialFactorization in mathematics refers to the process of expressing a number or an algebraic expression as a product of simpler factors. For example, the factors of 12 are 1, 2, 3, 4, 6, and 12, and we can express 12 as 12 = 1 Ã 12, 2 Ã 6, or 4 Ã 3.Similarly, factorization of polynomials involves expre
10 min read
Remainder TheoremThe Remainder Theorem is a simple yet powerful tool in algebra that helps you quickly find the remainder when dividing a polynomial by a linear polynomial, such as (x - a). Instead of performing long or synthetic division, you can use this theorem to substitute the polynomial and get the remainder d
8 min read
Factor TheoremFactor theorem is used for finding the roots of the given polynomial. This theorem is very helpful in finding the factors of the polynomial equation without actually solving them.According to the factor theorem, for any polynomial f(x) of degree n ⥠1 a linear polynomial (x - a) is the factor of the
10 min read
Algebraic IdentitiesAlgebraic Identities are fundamental equations in algebra where the left-hand side of the equation is always equal to the right-hand side, regardless of the values of the variables involved. These identities play a crucial role in simplifying algebraic computations and are essential for solving vari
14 min read
Chapter 3: Coordinate Geometry
Chapter 4: Linear equations in two variables
Linear Equations in One VariableLinear equation in one variable is the equation that is used for representing the conditions that are dependent on one variable. It is a linear equation i.e. the equation in which the degree of the equation is one, and it only has one variable.A linear equation in one variable is a mathematical stat
7 min read
Linear Equation in Two VariablesLinear Equation in Two Variables: A Linear equation is defined as an equation with the maximum degree of one only, for example, ax = b can be referred to as a linear equation, and when a Linear equation in two variables comes into the picture, it means that the entire equation has 2 variables presen
9 min read
Graph of Linear Equations in Two VariablesLinear equations are the first-order equations, i.e. the equations of degree 1. The equations which are used to define any straight line are linear, they are represented as, x + k = 0; These equations have a unique solution and can be represented on number lines very easily. Let's look at linear e
5 min read
Graphical Methods of Solving Pair of Linear Equations in Two VariablesA system of linear equations is just a pair of two lines that may or may not intersect. The graph of a linear equation is a line. There are various methods that can be used to solve two linear equations, for example, Substitution Method, Elimination Method, etc. An easy-to-understand and beginner-fr
8 min read
Chapter 5: Introduction to Euclid's Geometry
Chapter 6: Lines and Angles
Chapter 7: Triangles
Triangles in GeometryA triangle is a polygon with three sides (edges), three vertices (corners), and three angles. It is the simplest polygon in geometry, and the sum of its interior angles is always 180°. A triangle is formed by three line segments (edges) that intersect at three vertices, creating a two-dimensional re
13 min read
Congruence of Triangles |SSS, SAS, ASA, and RHS RulesCongruence of triangles is a concept in geometry which is used to compare different shapes. It is the condition between two triangles in which all three corresponding sides and corresponding angles are equal. Two triangles are said to be congruent if and only if they can be overlapped with each othe
9 min read
Theorem - Angle opposite to equal sides of an isosceles triangle are equal | Class 9 MathsIn geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Exampl
4 min read
Triangle Inequality Theorem, Proof & ApplicationsTriangle Inequality Theorem is the relation between the sides and angles of triangles which helps us understand the properties and solutions related to triangles. Triangles are the most fundamental geometric shape as we can't make any closed shape with two or one side. Triangles consist of three sid
8 min read
Chapter 8: Quadrilateral
Angle Sum Property of a QuadrilateralAngle Sum Property of a Quadrilateral: Quadrilaterals are encountered everywhere in life, every square rectangle, any shape with four sides is a quadrilateral. We know, three non-collinear points make a triangle. Similarly, four non-collinear points take up a shape that is called a quadrilateral. It
9 min read
QuadrilateralsQuadrilateral is a two-dimensional figure characterized by having four sides, four vertices, and four angles. It can be broadly classified into two categories: concave and convex. Within the convex category, there are several specific types of quadrilaterals, including trapezoids, parallelograms, re
12 min read
Parallelogram | Properties, Formulas, Types, and TheoremA parallelogram is a two-dimensional geometrical shape whose opposite sides are equal in length and are parallel. The opposite angles of a parallelogram are equal in measure and the Sum of adjacent angles of a parallelogram is equal to 180 degrees.A parallelogram is a four-sided polygon (quadrilater
10 min read
Rhombus: Definition, Properties, Formula and ExamplesA rhombus is a type of quadrilateral with the following additional properties. All four sides are of equal length and opposite sides parallel. The opposite angles are equal, and the diagonals bisect each other at right angles. A rhombus is a special case of a parallelogram, and if all its angles are
6 min read
Trapezium: Types | Formulas |Properties & ExamplesA Trapezium or Trapezoid is a quadrilateral (shape with 4 sides) with exactly one pair of opposite sides parallel to each other. The term "trapezium" comes from the Greek word "trapeze," meaning "table." It is a two-dimensional shape with four sides and four vertices.In the figure below, a and b are
8 min read
Square in Maths - Area, Perimeter, Examples & ApplicationsA square is a type of quadrilateral where all four sides are of equal length and each interior angle measures 90°. It has two pairs of parallel sides, with opposite sides being parallel. The diagonals of a square are equal in length and bisect each other at right angles.Squares are used in various f
5 min read
Kite - QuadrilateralsA Kite is a special type of quadrilateral that is easily recognizable by its unique shape, resembling the traditional toy flown on a string. In geometry, a kite has two pairs of adjacent sides that are of equal length. This distinctive feature sets it apart from other quadrilaterals like squares, re
8 min read
Properties of ParallelogramsProperties of Parallelograms: Parallelogram is a quadrilateral in which opposite sides are parallel and congruent and the opposite angles are equal. A parallelogram is formed by the intersection of two pairs of parallel lines. In this article, we will learn about the properties of parallelograms, in
9 min read
Mid Point TheoremThe Midpoint Theorem is a fundamental concept in geometry that simplifies solving problems involving triangles. It establishes a relationship between the midpoints of two sides of a triangle and the third side. This theorem is especially useful in coordinate geometry and in proving other mathematica
6 min read
Chapter 9: Areas of Parallelograms and Triangles