from
sklearn.linear_model
import
LogisticRegression
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.pipeline
import
make_pipeline
from
sklearn.model_selection
import
train_test_split
from
sklearn.metrics
import
accuracy_score
import
numpy as np
import
pandas as pd
df
=
pd.read_csv(
'diabetes.csv'
)
X
=
df.drop(
'Outcome'
,axis
=
1
)
y
=
df[
'Outcome'
]
X_train, X_test, y_train, y_test
=
train_test_split(X,y,
test_size
=
0.3
,
random_state
=
101
)
pipe
=
make_pipeline(StandardScaler(),
LogisticRegression())
pipe.fit(X_train, y_train)
y_pred
=
pipe.predict(X_test)
accuracy_score
=
accuracy_score(y_pred,y_test)
print
(
'accuracy score : '
,accuracy_score)