Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Deep Learning Tutorial
  • Data Analysis Tutorial
  • Python – Data visualization tutorial
  • NumPy
  • Pandas
  • OpenCV
  • R
  • Machine Learning Tutorial
  • Machine Learning Projects
  • Machine Learning Interview Questions
  • Machine Learning Mathematics
  • Deep Learning Project
  • Deep Learning Interview Questions
  • Computer Vision Tutorial
  • Computer Vision Projects
  • NLP
  • NLP Project
  • NLP Interview Questions
  • Statistics with Python
  • 100 Days of Machine Learning
Open In App
Next Article:
Transformers in Machine Learning
Next article icon

Transformers in Machine Learning

Last Updated : 06 Jun, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Transformer is a neural network architecture used for performing machine learning tasks particularly in natural language processing (NLP) and computer vision. In 2017 Vaswani et al. published a paper " Attention is All You Need" in which the transformers architecture was introduced. The article explores the architecture, workings and applications of transformers.

Need For Transformers Model in Machine Learning

Transformer Architecture uses self-attention to transform one whole sentence into a single sentence. This is useful where older models work step by step and it helps overcome the challenges seen in models like RNNs and LSTMs. Traditional models like RNNs (Recurrent Neural Networks) suffer from the vanishing gradient problem which leads to long-term memory loss. RNNs process text sequentially meaning they analyze words one at a time.

For example:

In the sentence: "XYZ went to France in 2019 when there were no cases of COVID and there he met the president of that country" the word "that country" refers to "France".

However RNN would struggle to link "that country" to "France" since it processes each word in sequence leading to losing context over long sentences. This limitation prevents RNNs from understanding the full meaning of the sentence.

While adding more memory cells in LSTMs (Long Short-Term Memory networks) helped address the vanishing gradient issue they still process words one by one. This sequential processing means LSTMs can't analyze an entire sentence at once.

For example:

The word "point" has different meanings in these two sentences:

  • "The needle has a sharp point." (Point = Tip)
  • "It is not polite to point at people." (Point = Gesture)

Traditional models struggle with this context dependence, whereas Transformer model through its self-attention mechanism processes the entire sentence in parallel addressing these issues and making it significantly more effective at understanding context.

Core Concepts of Transformers

Screenshot-2024-05-24-112357-768
Architecture and Working of Transformers

1. Self Attention Mechanism

The self attention mechanism allows transformers to determine which words in a sentence are most relevant to each other. This is done using a scaled dot-product attention approach:

Each word in a sequence is mapped to three vectors:

  • Query (Q)
  • Key (K)
  • Value (V)

Attention scores are computed as: \text{Attention}(Q, K, V) = \text{softmax} \left( \frac{QK^T}{\sqrt{d_k}} \right) V

These scores determine how much attention each word should pay to others.

2. Positional Encoding

Unlike RNNs, transformers lack an inherent understanding of word order since they process data in parallel. To solve this problem Positional Encodings are added to token embeddings providing information about the position of each token within a sequence.

3. Multi-Head Attention

Instead of one attention mechanism, transformers use multiple attention heads running in parallel. Each head captures different relationships or patterns in the data, enriching the model’s understanding.

4. Position-wise Feed-Forward Networks

The Feed-Forward Networks consist of two linear transformations with a ReLU activation. It is applied independently to each position in the sequence.

Mathematically:

\text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2

This transformation helps refine the encoded representation at each position.

5. Encoder-Decoder Architecture

The encoder-decoder structure is key to transformer models. The encoder processes the input sequence into a vector, while the decoder converts this vector back into a sequence. Each encoder and decoder layer includes self-attention and feed-forward layers. In the decoder, an encoder-decoder attention layer is added to focus on relevant parts of the input.

For example, a French sentence "Je suis étudiant" is translated into "I am a student" in English.

The encoder consists of multiple layers (typically 6 layers). Each layer has two main components:

  • Self-Attention Mechanism: Helps the model understand word relationships.
  • Feed-Forward Neural Network: Further transforms the representation.

The decoder also consists of 6 layers but with an additional encoder-decoder attention mechanism. This allows the decoder to focus on relevant parts of the input sentence while generating output.

Intuition with Example

For instance in the sentence "The cat didn't chase the mouse, because it was not hungry" the word 'it' refers to 'cat'. The self-attention mechanism helps the model correctly associate 'it' with 'cat' ensuring an accurate understanding of sentence structure.

Applications of Transformers

Some of the applications of transformers are:

  1. NLP Tasks: Transformers are used for machine translation, text summarization, named entity recognition and sentiment analysis.
  2. Speech Recognition: They process audio signals to convert speech into transcribed text.
  3. Computer Vision: Transformers are applied to image classification, object detection and image generation.
  4. Recommendation Systems: They provide personalized recommendations based on user preferences.
  5. Text and Music Generation: Transformers are used for generating text like articles and composing music.

Transformers have redefined deep learning across NLP, computer vision and beyond. With advancements like BERT, GPT and Vision Transformers (ViTs) they continue to push the boundaries of AI and language understanding and multimodal learning.


Next Article
Transformers in Machine Learning

E

error_502
Improve
Article Tags :
  • Machine Learning
  • AI-ML-DS
  • Deep-Learning
Practice Tags :
  • Machine Learning

Similar Reads

    Artificial Intelligence Tutorial | AI Tutorial
    Artificial Intelligence (AI) refers to the simulation of human intelligence in machines which helps in allowing them to think and act like humans. It involves creating algorithms and systems that can perform tasks which requiring human abilities such as visual perception, speech recognition, decisio
    5 min read
    What is Artificial Intelligence(AI)?
    Artificial Intelligence (AI) refers to the technology that allows machines and computers to replicate human intelligence. It enables systems to perform tasks that require human-like decision-making, such as learning from data, identifying patterns, making informed choices and solving complex problem
    13 min read
    History of AI
    The term Artificial Intelligence (AI) is already widely used in everything from smartphones to self-driving cars. AI has come a long way from science fiction stories to practical uses. Yet What is artificial intelligence and how did it go from being an idea in science fiction to a technology that re
    7 min read

    Types of AI

    Types of Artificial Intelligence (AI)
    Artificial Intelligence refers to something which is made by humans or non-natural things and Intelligence means the ability to understand or think. AI is not a system but it is implemented in the system. There are many different types of AI, each with its own strengths and weaknesses.This article w
    6 min read
    Types of AI Based on Capabilities: An In-Depth Exploration
    Artificial Intelligence (AI) is not just a single entity but encompasses a wide range of systems and technologies with varying levels of capabilities. To understand the full potential and limitations of AI, it's important to categorize it based on its capabilities. This article delves into the diffe
    5 min read
    Types of AI Based on Functionalities
    Artificial Intelligence (AI) has become an integral part of modern technology, influencing everything from how we interact with our devices to how businesses operate. However, AI is not a monolithic concept; it can be classified into different types based on its functionalities. Understanding these
    7 min read
    Agents in AI
    An AI agent is a software program that can interact with its surroundings, gather information, and use that information to complete tasks on its own to achieve goals set by humans.For instance, an AI agent on an online shopping platform can recommend products, answer customer questions, and process
    9 min read

    Problem Solving in AI

    Search Algorithms in AI
    Artificial Intelligence is the study of building agents that act rationally. Most of the time, these agents perform some kind of search algorithm in the background in order to achieve their tasks. A search problem consists of: A State Space. Set of all possible states where you can be.A Start State.
    10 min read
    Uninformed Search Algorithms in AI
    Uninformed search algorithms is also known as blind search algorithms, are a class of search algorithms that do not use any domain-specific knowledge about the problem being solved. Uninformed search algorithms rely on the information provided in the problem definition, such as the initial state, ac
    8 min read
    Informed Search Algorithms in Artificial Intelligence
    Informed search algorithms, also known as heuristic search algorithms, are an essential component of Artificial Intelligence (AI). These algorithms use domain-specific knowledge to improve the efficiency of the search process, leading to faster and more optimal solutions compared to uninformed searc
    10 min read
    Local Search Algorithm in Artificial Intelligence
    Local search algorithms are essential tools in artificial intelligence and optimization, employed to find high-quality solutions in large and complex problem spaces. Key algorithms include Hill-Climbing Search, Simulated Annealing, Local Beam Search, Genetic Algorithms, and Tabu Search. Each of thes
    4 min read
    Adversarial Search Algorithms in Artificial Intelligence (AI)
    Adversarial search algorithms are the backbone of strategic decision-making in artificial intelligence, it enables the agents to navigate competitive scenarios effectively. This article offers concise yet comprehensive advantages of these algorithms from their foundational principles to practical ap
    15+ min read
    Constraint Satisfaction Problems (CSP) in Artificial Intelligence
    A Constraint Satisfaction Problem is a mathematical problem where the solution must meet a number of constraints. In CSP the objective is to assign values to variables such that all the constraints are satisfied. Many AI applications use CSPs to solve decision-making problems that involve managing o
    10 min read

    Knowledge, Reasoning and Planning in AI

    How do knowledge representation and reasoning techniques support intelligent systems?
    In artificial intelligence (AI), knowledge representation and reasoning (KR&R) stands as a fundamental pillar, crucial for enabling machines to emulate complex decision-making and problem-solving abilities akin to those of humans. This article explores the intricate relationship between KR&R
    5 min read
    First-Order Logic in Artificial Intelligence
    First-order logic (FOL) is also known as predicate logic. It is a foundational framework used in mathematics, philosophy, linguistics, and computer science. In artificial intelligence (AI), FOL is important for knowledge representation, automated reasoning, and NLP.FOL extends propositional logic by
    3 min read
    Types of Reasoning in Artificial Intelligence
    In today's tech-driven world, machines are being designed to mimic human intelligence and actions. One key aspect of this is reasoning, a logical process that enables machines to conclude, make predictions, and solve problems just like humans. Artificial Intelligence (AI) employs various types of re
    6 min read
    What is the Role of Planning in Artificial Intelligence?
    Artificial Intelligence (AI) is reshaping the future, playing a pivotal role in domains like intelligent robotics, self-driving cars, and smart cities. At the heart of AI systems’ ability to perform tasks autonomously is AI planning, which is critical in guiding AI systems to make informed decisions
    7 min read
    Representing Knowledge in an Uncertain Domain in AI
    Artificial Intelligence (AI) systems often operate in environments where uncertainty is a fundamental aspect. Representing and reasoning about knowledge in such uncertain domains is crucial for building robust and intelligent systems. This article explores the various methods and techniques used in
    6 min read

    Learning in AI

    Supervised Machine Learning
    Supervised machine learning is a fundamental approach for machine learning and artificial intelligence. It involves training a model using labeled data, where each input comes with a corresponding correct output. The process is like a teacher guiding a student—hence the term "supervised" learning. I
    12 min read
    What is Unsupervised Learning?
    Unsupervised learning is a branch of machine learning that deals with unlabeled data. Unlike supervised learning, where the data is labeled with a specific category or outcome, unsupervised learning algorithms are tasked with finding patterns and relationships within the data without any prior knowl
    8 min read
    Semi-Supervised Learning in ML
    Today's Machine Learning algorithms can be broadly classified into three categories, Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Casting Reinforced Learning aside, the primary two categories of Machine Learning problems are Supervised and Unsupervised Learning. The basic
    4 min read
    Reinforcement Learning
    Reinforcement Learning (RL) is a branch of machine learning that focuses on how agents can learn to make decisions through trial and error to maximize cumulative rewards. RL allows machines to learn by interacting with an environment and receiving feedback based on their actions. This feedback comes
    6 min read
    Self-Supervised Learning (SSL)
    In this article, we will learn a major type of machine learning model which is Self-Supervised Learning Algorithms. Usage of these algorithms has increased widely in the past times as the sizes of the model have increased up to billions of parameters and hence require a huge corpus of data to train
    8 min read
    Introduction to Deep Learning
    Deep Learning is transforming the way machines understand, learn and interact with complex data. Deep learning mimics neural networks of the human brain, it enables computers to autonomously uncover patterns and make informed decisions from vast amounts of unstructured data. How Deep Learning Works?
    7 min read
    Natural Language Processing (NLP) - Overview
    Natural Language Processing (NLP) is a field that combines computer science, artificial intelligence and language studies. It helps computers understand, process and create human language in a way that makes sense and is useful. With the growing amount of text data from social media, websites and ot
    9 min read
    Computer Vision Tutorial
    Computer Vision is a branch of Artificial Intelligence (AI) that enables computers to interpret and extract information from images and videos, similar to human perception. It involves developing algorithms to process visual data and derive meaningful insights.Why Learn Computer Vision?High Demand i
    8 min read
    Artificial Intelligence in Robotics
    Artificial Intelligence (AI) in robotics is one of the most groundbreaking technological advancements, revolutionizing how robots perform tasks. What was once a futuristic concept from space operas, the idea of "artificial intelligence robots" is now a reality, shaping industries globally. Unlike ea
    10 min read

    Generative AI

    Generative Adversarial Network (GAN)
    Generative Adversarial Networks (GANs) help machines to create new, realistic data by learning from existing examples. It is introduced by Ian Goodfellow and his team in 2014 and they have transformed how computers generate images, videos, music and more. Unlike traditional models that only recogniz
    12 min read
    Variational AutoEncoders
    Variational Autoencoders (VAEs) are type of generative model in machine learning that create new data similar to the input they are trained on. They not only compress and reconstruct data like traditional autoencoders but also learn a continuous probabilistic representation of the underlying feature
    7 min read
    What are Diffusion Models?
    Diffusion models are a powerful class of generative models that have gained prominence in the field of machine learning and artificial intelligence. They offer a unique approach to generating data by simulating the diffusion process, which is inspired by physical processes such as heat diffusion. Th
    6 min read
    Transformers in Machine Learning
    Transformer is a neural network architecture used for performing machine learning tasks particularly in natural language processing (NLP) and computer vision. In 2017 Vaswani et al. published a paper " Attention is All You Need" in which the transformers architecture was introduced. The article expl
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences