Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Data Science
  • Data Science Projects
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • ML Projects
  • Deep Learning
  • NLP
  • Computer Vision
  • Artificial Intelligence
Open In App
Next Article:
DBSCAN Clustering in ML - Density based clustering
Next article icon

DBSCAN Clustering in ML - Density based clustering

Last Updated : 18 May, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

DBSCAN is a density-based clustering algorithm that groups data points that are closely packed together and marks outliers as noise based on their density in the feature space. It identifies clusters as dense regions in the data space separated by areas of lower density. Unlike K-Means or hierarchical clustering which assumes clusters are compact and spherical, DBSCAN perform well in handling real-world data irregularities such as:

  • Arbitrary-Shaped Clusters: Clusters can take any shape not just circular or convex.
  • Noise and Outliers: It effectively identifies and handles noise points without assigning them to any cluster.
Databases
DBSCAN Clustering in ML | Density based clustering

The figure above shows a data set with clustering algorithms: K-Means and Hierarchical handling compact, spherical clusters with varying noise tolerance while DBSCAN manages arbitrary-shaped clusters and noise handling.

Key Parameters in DBSCAN

1. eps: This defines the radius of the neighborhood around a data point. If the distance between two points is less than or equal to eps they are considered neighbors. A common method to determine eps is by analyzing the k-distance graph. Choosing the right eps is important:

  • If eps is too small most points will be classified as noise.
  • If eps is too large clusters may merge and the algorithm may fail to distinguish between them.

2. MinPts: This is the minimum number of points required within the eps radius to form a dense region. A general rule of thumb is to set MinPts >= D+1 where D is the number of dimensions in the dataset.

For most cases a minimum value of MinPts = 3 is recommended.

How Does DBSCAN Work? 

DBSCAN works by categorizing data points into three types:

  1. Core points which have a sufficient number of neighbors within a specified radius (eplison)
  2. Border points which are near core points but lack enough neighbors to be core points themselves
  3. Noise points which do not belong to any cluster.

By iteratively expanding clusters from core points and connecting density-reachable points, DBSCAN forms clusters without relying on rigid assumptions about their shape or size.

Steps in the DBSCAN Algorithm

  1. Identify Core Points: For each point in the dataset count the number of points within its eps neighborhood. If the count meets or exceeds MinPts mark the point as a core point.
  2. Form Clusters: For each core point that is not already assigned to a cluster create a new cluster. Recursively find all density-connected points i.e points within the eps radius of the core point and add them to the cluster.
  3. Density Connectivity: Two points a and b are density-connected if there exists a chain of points where each point is within the eps radius of the next and at least one point in the chain is a core point. This chaining process ensures that all points in a cluster are connected through a series of dense regions.
  4. Label Noise Points: After processing all points any point that does not belong to a cluster is labeled as noise.

Implementation Of DBSCAN Algorithm In Python 

Here we’ll use the Python library sklearn to compute DBSCAN and matplotlib.pyplot library for visualizing clusters.

Step 1: Importing Libraries 

We import all the necessary library like numpy , matplotlib and scikit-learn.

Python
import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets import make_blobs from sklearn.preprocessing import StandardScaler from sklearn import datasets 

Step 2: Preparing Dataset 

We will create a dataset of 4 clusters using make_blob. The dataset have 300 points that are grouped into 4 visible clusters.

Python
# Load data in X X, y_true = make_blobs(n_samples=300, centers=4,                        cluster_std=0.50, random_state=0) 

Step 3: Applying DBSCAN Clustering

Now we apply DBSCAN clustering on our data, count it and visualize it using the matplotlib library.

  • eps=0.3: The radius to look for neighboring points.
  • min_samples: Minimum number of points required to form a dense region a cluster.
  • labels: Cluster numbers for each point. -1 means the point is considered noise.
Python
db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_  # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)  unique_labels = set(labels) colors = ['y', 'b', 'g', 'r'] print(colors) for k, col in zip(unique_labels, colors):     if k == -1:         # Black used for noise.         col = 'k'      class_member_mask = (labels == k)      xy = X[class_member_mask & core_samples_mask]     plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,              markeredgecolor='k',              markersize=6)      xy = X[class_member_mask & ~core_samples_mask]     plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,              markeredgecolor='k',              markersize=6)  plt.title('number of clusters: %d' % n_clusters_) plt.show() 

Output:

Cluster of dataset
Cluster of dataset 

As shown in above output image cluster are shown in different colours like yellow, blue, green and red.

Step 4: Evaluation Metrics For DBSCAN Algorithm In Machine Learning 

We will use the Silhouette score and Adjusted rand score for evaluating clustering algorithms.

  • Silhouette's score is in the range of -1 to 1. A score near 1 denotes the best meaning that the data point i is very compact within the cluster to which it belongs and far away from the other clusters. The worst value is -1. Values near 0 denote overlapping clusters.
  • Absolute Rand Score is in the range of 0 to 1. More than 0.9 denotes excellent cluster recovery and above 0.8 is a good recovery. Less than 0.5 is considered to be poor recovery. 
Python
sc = metrics.silhouette_score(X, labels) print("Silhouette Coefficient:%0.2f" % sc) ari = adjusted_rand_score(y_true, labels) print("Adjusted Rand Index: %0.2f" % ari) 

Output:

Coefficient:0.13
Adjusted Rand Index: 0.31:

Black points represent outliers. By changing the eps and the MinPts we can change the cluster configuration.

When Should We Use DBSCAN Over K-Means Clustering?

DBSCAN and K-Means are both clustering algorithms that group together data that have the same characteristic. However they work on different principles and are suitable for different types of data. We prefer to use DBSCAN when the data is not spherical in shape or the number of classes is not known beforehand.

                        DBSCAN                                                        K-Means                            

In DBSCAN we need not specify the number of clusters.

It is very sensitive to the number of clusters so it need to specified

Clusters formed in DBSCAN can be of any arbitrary shape.

Clusters formed are spherical or convex in shape

It can work well with datasets having noise and outliers

It does not work well with outliers data. Outliers can skew the clusters in K-Means to a very large extent. 

In DBSCAN two parameters are required for training the Model

In K-Means only one parameter is required is for training the model

p12
DBSCAN Vs K-Means

As it can identify clusters of arbitrary shapes and effectively handle noise. K-Means on the other hand is better suited for data with well-defined, spherical clusters and is less effective with noise or complex cluster structures.

More differences between these two algorithms can be found here.


Next Article
DBSCAN Clustering in ML - Density based clustering

D

Debomit Dey
Improve
Article Tags :
  • Machine Learning
  • AI-ML-DS
  • ML-Clustering
  • AI-ML-DS With Python
Practice Tags :
  • Machine Learning

Similar Reads

    Machine Learning Algorithms
    Machine learning algorithms are essentially sets of instructions that allow computers to learn from data, make predictions, and improve their performance over time without being explicitly programmed. Machine learning algorithms are broadly categorized into three types: Supervised Learning: Algorith
    8 min read
    Top 15 Machine Learning Algorithms Every Data Scientist Should Know in 2025
    Machine Learning (ML) Algorithms are the backbone of everything from Netflix recommendations to fraud detection in financial institutions. These algorithms form the core of intelligent systems, empowering organizations to analyze patterns, predict outcomes, and automate decision-making processes. Wi
    14 min read

    Linear Model Regression

    Ordinary Least Squares (OLS) using statsmodels
    Ordinary Least Squares (OLS) is a widely used statistical method for estimating the parameters of a linear regression model. It minimizes the sum of squared residuals between observed and predicted values. In this article we will learn how to implement Ordinary Least Squares (OLS) regression using P
    3 min read
    Linear Regression (Python Implementation)
    Linear regression is a statistical method that is used to predict a continuous dependent variable i.e target variable based on one or more independent variables. This technique assumes a linear relationship between the dependent and independent variables which means the dependent variable changes pr
    14 min read
    Multiple Linear Regression using Python - ML
    Linear regression is a statistical method used for predictive analysis. It models the relationship between a dependent variable and a single independent variable by fitting a linear equation to the data. Multiple Linear Regression extends this concept by modelling the relationship between a dependen
    4 min read
    Polynomial Regression ( From Scratch using Python )
    Prerequisites Linear RegressionGradient DescentIntroductionLinear Regression finds the correlation between the dependent variable ( or target variable ) and independent variables ( or features ). In short, it is a linear model to fit the data linearly. But it fails to fit and catch the pattern in no
    5 min read
    Bayesian Linear Regression
    Linear regression is based on the assumption that the underlying data is normally distributed and that all relevant predictor variables have a linear relationship with the outcome. But In the real world, this is not always possible, it will follows these assumptions, Bayesian regression could be the
    10 min read
    How to Perform Quantile Regression in Python
    In this article, we are going to see how to perform quantile regression in Python. Linear regression is defined as the statistical method that constructs a relationship between a dependent variable and an independent variable as per the given set of variables. While performing linear regression we a
    4 min read
    Isotonic Regression in Scikit Learn
    Isotonic regression is a regression technique in which the predictor variable is monotonically related to the target variable. This means that as the value of the predictor variable increases, the value of the target variable either increases or decreases in a consistent, non-oscillating manner. Mat
    6 min read
    Stepwise Regression in Python
    Stepwise regression is a method of fitting a regression model by iteratively adding or removing variables. It is used to build a model that is accurate and parsimonious, meaning that it has the smallest number of variables that can explain the data. There are two main types of stepwise regression: F
    6 min read
    Least Angle Regression (LARS)
    Regression is a supervised machine learning task that can predict continuous values (real numbers), as compared to classification, that can predict categorical or discrete values. Before we begin, if you are a beginner, I highly recommend this article. Least Angle Regression (LARS) is an algorithm u
    3 min read

    Linear Model Classification

    Logistic Regression in Machine Learning
    Logistic Regression is a supervised machine learning algorithm used for classification problems. Unlike linear regression which predicts continuous values it predicts the probability that an input belongs to a specific class. It is used for binary classification where the output can be one of two po
    11 min read
    Understanding Activation Functions in Depth
    In artificial neural networks, the activation function of a neuron determines its output for a given input. This output serves as the input for subsequent neurons in the network, continuing the process until the network solves the original problem. Consider a binary classification problem, where the
    6 min read

    Regularization

    Implementation of Lasso Regression From Scratch using Python
    Lasso Regression (Least Absolute Shrinkage and Selection Operator) is a linear regression technique that combines prediction with feature selection. It does this by adding a penalty term to the cost function shrinking less relevant feature's coefficients to zero. This makes it effective for high-dim
    7 min read
    Implementation of Ridge Regression from Scratch using Python
    Prerequisites: Linear Regression Gradient Descent Introduction: Ridge Regression ( or L2 Regularization ) is a variation of Linear Regression. In Linear Regression, it minimizes the Residual Sum of Squares ( or RSS or cost function ) to fit the training examples perfectly as possible. The cost funct
    4 min read
    Implementation of Elastic Net Regression From Scratch
    Prerequisites: Linear RegressionGradient DescentLasso & Ridge RegressionIntroduction: Elastic-Net Regression is a modification of Linear Regression which shares the same hypothetical function for prediction. The cost function of Linear Regression is represented by J. \frac{1}{m} \sum_{i=1}^{m}\l
    5 min read

    K-Nearest Neighbors (KNN)

    Implementation of Elastic Net Regression From Scratch
    Prerequisites: Linear RegressionGradient DescentLasso & Ridge RegressionIntroduction: Elastic-Net Regression is a modification of Linear Regression which shares the same hypothetical function for prediction. The cost function of Linear Regression is represented by J. \frac{1}{m} \sum_{i=1}^{m}\l
    5 min read
    Brute Force Approach and its pros and cons
    In this article, we will discuss the Brute Force Algorithm and what are its pros and cons. What is the Brute Force Algorithm?A brute force algorithm is a simple, comprehensive search strategy that systematically explores every option until a problem's answer is discovered. It's a generic approach to
    3 min read
    Implementation of KNN classifier using Scikit - learn - Python
    K-Nearest Neighbors is a most simple but fundamental classifier algorithm in Machine Learning. It is under the supervised learning category and used with great intensity for pattern recognition, data mining and analysis of intrusion. It is widely disposable in real-life scenarios since it is non-par
    3 min read
    Regression using k-Nearest Neighbors in R Programming
    Machine learning is a subset of Artificial Intelligence that provides a machine with the ability to learn automatically without being explicitly programmed. The machine in such cases improves from the experience without human intervention and adjusts actions accordingly. It is primarily of 3 types:
    5 min read

    Support Vector Machines

    Support Vector Machine (SVM) Algorithm
    Support Vector Machine (SVM) is a supervised machine learning algorithm used for classification and regression tasks. It tries to find the best boundary known as hyperplane that separates different classes in the data. It is useful when you want to do binary classification like spam vs. not spam or
    9 min read
    Classifying data using Support Vector Machines(SVMs) in Python
    Introduction to SVMs: In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. A Support Vector Machine (SVM) is a discriminative classifier
    4 min read
    Support Vector Regression (SVR) using Linear and Non-Linear Kernels in Scikit Learn
    Support vector regression (SVR) is a type of support vector machine (SVM) that is used for regression tasks. It tries to find a function that best predicts the continuous output value for a given input value. SVR can use both linear and non-linear kernels. A linear kernel is a simple dot product bet
    5 min read
    Major Kernel Functions in Support Vector Machine (SVM)
    In previous article we have discussed about SVM(Support Vector Machine) in Machine Learning. Now we are going to learn  in detail about SVM Kernel and Different Kernel Functions and its examples.Types of SVM Kernel FunctionsSVM algorithm use the mathematical function defined by the kernel. Kernel Fu
    4 min read
    ML - Stochastic Gradient Descent (SGD)
    Stochastic Gradient Descent (SGD) is an optimization algorithm in machine learning, particularly when dealing with large datasets. It is a variant of the traditional gradient descent algorithm but offers several advantages in terms of efficiency and scalability, making it the go-to method for many d
    8 min read

    Decision Tree

    Major Kernel Functions in Support Vector Machine (SVM)
    In previous article we have discussed about SVM(Support Vector Machine) in Machine Learning. Now we are going to learn  in detail about SVM Kernel and Different Kernel Functions and its examples.Types of SVM Kernel FunctionsSVM algorithm use the mathematical function defined by the kernel. Kernel Fu
    4 min read
    CART (Classification And Regression Tree) in Machine Learning
    CART( Classification And Regression Trees) is a variation of the decision tree algorithm. It can handle both classification and regression tasks. Scikit-Learn uses the Classification And Regression Tree (CART) algorithm to train Decision Trees (also called “growing” trees). CART was first produced b
    11 min read
    Decision Tree Classifiers in R Programming
    Classification is the task in which objects of several categories are categorized into their respective classes using the properties of classes. A classification model is typically used to, Predict the class label for a new unlabeled data objectProvide a descriptive model explaining what features ch
    4 min read
    Decision Tree Regression using sklearn - Python
    Decision Tree Regression is a method used to predict continuous values like prices or scores by using a tree-like structure. It works by splitting the data into smaller parts based on simple rules taken from the input features. These splits help reduce errors in prediction. At the end of each branch
    4 min read

    Ensemble Learning

    Ensemble Methods in Python
    Ensemble means a group of elements viewed as a whole rather than individually. An Ensemble method creates multiple models and combines them to solve it. Ensemble methods help to improve the robustness/generalizability of the model. In this article, we will discuss some methods with their implementat
    11 min read
    Random Forest Regression in Python
    A random forest is an ensemble learning method that combines the predictions from multiple decision trees to produce a more accurate and stable prediction. It is a type of supervised learning algorithm that can be used for both classification and regression tasks.In regression task we can use Random
    7 min read
    ML | Extra Tree Classifier for Feature Selection
    Prerequisites: Decision Tree Classifier Extremely Randomized Trees Classifier(Extra Trees Classifier) is a type of ensemble learning technique which aggregates the results of multiple de-correlated decision trees collected in a "forest" to output it's classification result. In concept, it is very si
    6 min read
    Implementing the AdaBoost Algorithm From Scratch
    AdaBoost means Adaptive Boosting which is a ensemble learning technique that combines multiple weak classifiers to create a strong classifier. It works by sequentially adding classifiers to correct the errors made by previous models giving more weight to the misclassified data points. In this articl
    4 min read
    XGBoost
    Traditional machine learning models like decision trees and random forests are easy to interpret but often struggle with accuracy on complex datasets. XGBoost short form for eXtreme Gradient Boosting is an advanced machine learning algorithm designed for efficiency, speed and high performance.It is
    6 min read
    CatBoost in Machine Learning
    When working with machine learning we often deal with datasets that include categorical data. We use techniques like One-Hot Encoding or Label Encoding to convert these categorical features into numerical values. However One-Hot Encoding can lead to sparse matrix and cause overfitting. This is where
    5 min read
    LightGBM (Light Gradient Boosting Machine)
    LightGBM is an open-source high-performance framework developed by Microsoft. It is an ensemble learning framework that uses gradient boosting method which constructs a strong learner by sequentially adding weak learners in a gradient descent manner.It's designed for efficiency, scalability and high
    7 min read
    Stacking in Machine Learning
    Stacking is a ensemble learning technique where the final model known as the “stacked model" combines the predictions from multiple base models. The goal is to create a stronger model by using different models and combining them.Architecture of StackingStacking architecture is like a team of models
    3 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences