Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Python
  • R Language
  • Python for Data Science
  • NumPy
  • Pandas
  • OpenCV
  • Data Analysis
  • ML Math
  • Machine Learning
  • NLP
  • Deep Learning
  • Deep Learning Interview Questions
  • Machine Learning
  • ML Projects
  • ML Interview Questions
Open In App
Next Article:
Machine Learning and Data Science
Next article icon

Machine Learning and Data Science

Last Updated : 05 Feb, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Machine learning is indeed shaping the world in many ways beyond imagination. Look around yourself and you will find yourselves immersed in the world of data science, take Alexa for example, a beautifully built user-friendly AI by none other than Amazon and Alexa is not the only one, there are more such AIs like Google Assistant, Cortana, etc. So, how were they developed and the most crucial question of all, why were they developed in the first place? Well, we will try to dive into all such questions and will also come up with some very reasonable yet technical answers. The first and foremost question at hand here is what is Machine Learning and Data Science.

Data Science

Many have the notion that data science is a superset of Machine Learning. Well, those people are partly correct as data science is nothing but a vast amount of data and then applies machine learning algorithms, methods, technologies to these data. Therefore, to master data science you should be an expert in mathematics, statistics and also in subject expertise. Well, what is subject expertise? Subject expertise as the name gives it away is nothing but the knowledge about the domain to be able to abstract and calculate the same. So basically these three concepts are considered the cornerstones of data science and if you manage to ace all of them, well then congratulate yourself because you are an A grade Data Scientist. Let us understand this with the help of a diagram that was curated by Hugh Conway.

Now, you are familiar with the term data science and what it comprises of. So, if that lit a spark in you to pursue this field as a career there are a couple of things that you might need to watch out for! To become a data scientist you will need immense knowledge in three prominent domains and those are Analytics, Programming and Domain Knowledge. But you see the data science can't be mastered just because you have certain knowledge but you will require critical skills as well and to carve out the data scientist in you and to hone your skills there are a couple of skills you can practice and which will help you in your journey:

  • Expert level Python skills, SAS, R, SCALA
  • Hands-on expertise in SQL coding.
  • Capacity and Ability to deal with the unstructured data.
  • Ability to understand various analytical functions.
  • The last but not the least, knowledge of Machine Learning

Machine Learning

As we said that the Machine Learning could be said to be a subset of Data Science but the definition does not end here. A very simple and reasonable machine learning could be that Machine Learning provides techniques to extract data and then appends various methods to learn from the collected data and then with the help of some well-defined algorithms to be able to predict future trends from the data. Machine Learning or traditional machine learning had its core revolving around spotting patterns and then grasp the hidden insights of the available data. Well, that was the elaborated definition of Machine Learning but how do we justify this definition? A real-life functional example proves to be very good in such cases and here the exemplar would be GOOGLE. Google is the quintessential example for machine learning as GOOGLE records the number of searches you have made and then suggests you similar searches when you google something in the future. Similarly, AMAZON recommends your products based on your previous searches and so does NETFLIX, based on the TV show or Movies that you watched, you get a similar type of suggestions. It is not an unknown fact now, that Machine Learning's domain is growing exponentially worldwide, so if you wish to pursue a career in this field, there are a couple of skills that are critical for you to trump this domain.

  • Good expertise in computer fundamentals.
  • Well-versed programming skills.
  • A good amount of knowledge about probability and statistics.
  • You will also need to improve the Data Modeling skills.

Next Article
Machine Learning and Data Science

A

anjalisinghattri2707
Improve
Article Tags :
  • Technical Scripter
  • Machine Learning
  • Technical Scripter 2019
  • data-science
Practice Tags :
  • Machine Learning

Similar Reads

    Data Science Vs Machine Learning : Key Differences
    In the 21st Century, two terms "Data Science" and "Machine Learning" are some of the most searched terms in the technology world. From 1st-year Computer Science students to big Organizations like Netflix, Amazon, etc are running behind these two techniques. Both fields have grown exponentially due t
    5 min read
    Difference Between Data mining and Machine learning
    Data mining: The process of extracting useful information from a huge amount of data is called Data mining. Data mining is a tool that is used by humans to discover new, accurate, and useful patterns in data or meaningful relevant information for the ones who need it. Machine learning: The process o
    2 min read
    How does Machine Learning Works?
    Machine Learning is a subset of Artificial Intelligence that uses datasets to gain insights from it and predict future values. It uses a systematic approach to achieve its goal going through various steps such as data collection, preprocessing, modeling, training, tuning, evaluation, visualization,
    7 min read
    Statistics For Machine Learning
    Machine Learning Statistics: In the field of machine learning (ML), statistics plays a pivotal role in extracting meaningful insights from data to make informed decisions. Statistics provides the foundation upon which various ML algorithms are built, enabling the analysis, interpretation, and predic
    7 min read
    What is Data Acquisition in Machine Learning?
    Data acquisition, or DAQ, is the cornerstone of machine learning. It is essential for obtaining high-quality data for model training and optimizing performance. Data-centric techniques are becoming more and more important across a wide range of industries, and DAQ is now a vital tool for improving p
    12 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences