model = keras.models.Sequential([ layers.Conv2D(filters=32, kernel_size=(5, 5), activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 3), padding='same'), layers.MaxPooling2D(2, 2), layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same'), layers.MaxPooling2D(2, 2), layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same'), layers.MaxPooling2D(2, 2), layers.Flatten(), layers.Dense(256, activation='relu'), layers.BatchNormalization(), layers.Dense(128, activation='relu'), layers.Dropout(0.3), layers.BatchNormalization(), layers.Dense(3, activation='softmax') ]) model.summary()