Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Longest substring whose characters can be rearranged to form a Palindrome
Next article icon

Longest substring whose characters can be rearranged to form a Palindrome

Last Updated : 11 Feb, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a string S of length N which only contains lowercase alphabets. Find the length of the longest substring of S such that the characters in it can be rearranged to form a palindrome. 

Examples:

Input: S = “aabe”
Output: 3
Explanation:
The substring “aab” can be rearranged to form "aba", which is a palindromic substring.
Since the length of “aab” is 3 so output is 3.
Notice that "a", "aa", "b" and "e" can be arranged to form palindromic strings, but they are not longer than “aab”.

Input: S = "adbabd"
Output: 6
Explanation:
The whole string "adbabd" can be rearranged to form a palindromic substring. One possible arrangement is "abddba".
Therefore, output length of the string i.e., 6.

Naive Approach: The idea is to generate all possible substring and keep count of each character in it. Initialize answer with the value 0. If the count of each character is even with at most one character with the odd occurrence, the substring can be re-arranged to form a palindromic string. If a substring satisfies this property then update the answer. Print the maximum length after the above steps. 

Below is the implementation of the above approach:

C++
// C++ code for the above approach  #include <bits/stdc++.h> using namespace std;  // function to check if the string can be // rearranged to a palindromic string or not bool ispalindromic(string s) {      int n = s.size();     // hashmap to count the frequency of     // every character in given substring     unordered_map<char, int> hashmap;      for (auto ch : s) {         hashmap[ch]++;     }      int count = 0;      // Count of characters having odd frequency     for (auto i : hashmap) {         if (i.second % 2 == 1)             count++;     }      // if count is greater than 1     if (count > 1) {         return false;     }      return true; } // Function to get the length of longest // substring whose characters can be // arranged to form a palindromic string int longestSubstring(string S, int n) {     int ans = 0;      for (int i = 0; i < S.size(); i++) {         string curstr = "";         for (int j = i; j < S.size(); j++) {                        // Storing the substring             curstr += S[j];                          // Checking if it is possible to             // make it a palindrome             if (ispalindromic(curstr)                 == true)              {                                  // Storing the maximum answer                 ans = max(ans, j - i + 1);             }         }     }      return ans; }  // Driver code int main() {      // Given String     string s = "adbabd";      // Length of given string     int n = s.size();      // Function call     cout << (longestSubstring(s, n)); }  // This code is contributed by Arpit Jain 
Java
// Java code for the above approach import java.io.*; import java.util.*;  class GFG {    // function to check if the string can be   // rearranged to a palindromic string or not   static boolean ispalindromic(String s)   {      int n = s.length();          // hashmap to count the frequency of     // every character in given substring     HashMap<Character,Integer>hashmap = new HashMap<Character,Integer>();      for (int ch = 0; ch < n; ch++) {       if(hashmap.containsKey(s.charAt(ch))){         hashmap.put(s.charAt(ch), hashmap.get(s.charAt(ch))+1);       }       else hashmap.put(s.charAt(ch),1);     }       int count = 0;      // Count of characters having odd frequency     for(Character i : hashmap.keySet()){       if (hashmap.get(i) % 2 == 1)         count++;     }      // if count is greater than 1     if (count > 1) {       return false;     }      return true;   }      // Function to get the length of longest   // substring whose characters can be   // arranged to form a palindromic string   static int longestSubstring(String S, int n)   {     int ans = 0;      for (int i = 0; i < S.length(); i++) {       String curstr = "";       for (int j = i; j < S.length(); j++) {          // Storing the substring         curstr += S.charAt(j);          // Checking if it is possible to         // make it a palindrome         if (ispalindromic(curstr)             == true)         {            // Storing the maximum answer           ans = Math.max(ans, j - i + 1);         }       }     }      return ans;   }    // Driver code   public static void main (String[] args)   {      // Given String     String s = "adbabd";      // Length of given string     int n = s.length();      // Function call     System.out.println(longestSubstring(s, n));   } }  // This code is contributed by Aman Kumar. 
Python
# Python code for the above approach  # function to check if the string can be # rearranged to a palindromic string or not def ispalindromic(s):     n = len(s)          # hashmap to count the frequency of     # every character in given substring     hashmap={}     for ch in s:         if(ch in hashmap):             hashmap[ch] = hashmap[ch] + 1         else:             hashmap[ch] = 1          count = 0          # Count of characters having odd frequency     for key in hashmap:         if(hashmap[key]%2 == 1):             count += 1          # if count is greater than 1     if(count > 1):         return False          return True      # Function to get the length of longest # substring whose characters can be #  arranged to form a palindromic string def longestSubstring(S, n):     ans = 0          for i in range(len(S)):         curstr = ""         for j in range(i,len(S)):             # Storing the substring             curstr += S[j]                          # Checking if it is possible to             # make it a palindrome             if(ispalindromic(curstr) == True):                 # Storing the maximum answer                 ans = max(ans, j - i + 1)          return ans      # Driver code  # Given String s = "adbabd"  # Length of given string n = len(s)  # Function call print(longestSubstring(s,n))  # This code is contributed by Pushpesh Raj. 
C#
// C# code for the above approach using System; using System.Collections.Generic;  class GFG {    // function to check if the string can be   // rearranged to a palindromic string or not   static bool ispalindromic(string s)   {      int n = s.Length;      // hashmap to count the frequency of     // every character in given substring     Dictionary<char,int> hashmap = new Dictionary<char,int>();      for (int ch = 0; ch < n; ch++) {       if(hashmap.ContainsKey(s[ch])){         hashmap[s[ch]] = hashmap[s[ch]]+1;       }       else hashmap.Add(s[ch],1);     }       int count = 0;      // Count of characters having odd frequency     foreach(KeyValuePair<char,int> i in hashmap){       if (i.Value % 2 == 1)         count++;     }      // if count is greater than 1     if (count > 1) {       return false;     }      return true;   }    // Function to get the length of longest   // substring whose characters can be   // arranged to form a palindromic string   static int longestSubstring(string S, int n)   {     int ans = 0;      for (int i = 0; i < S.Length; i++) {       string curstr = "";       for (int j = i; j < S.Length; j++) {          // Storing the substring         curstr += S[j];          // Checking if it is possible to         // make it a palindrome         if (ispalindromic(curstr)             == true)         {            // Storing the maximum answer           ans = Math.Max(ans, j - i + 1);         }       }     }      return ans;   }    // Driver code   public static void Main()   {      // Given String     string s = "adbabd";      // Length of given string     int n = s.Length;      // Function call     Console.WriteLine(longestSubstring(s, n));   } }  // This code is contributed by Utkarsh 
JavaScript
// Javascript code for the above approach  // function to check if the string can be // rearranged to a palindromic string or not function ispalindromic(s) {   let n = s.length;      // hashmap to count the frequency of   // every character in given substring   let hashmap = {};    for (let i = 0; i < n; i++) {     if (!hashmap[s[i]]) {       hashmap[s[i]] = 1;     } else {       hashmap[s[i]]++;     }   }    let count = 0;    // Count of characters having odd frequency   for (let key in hashmap) {     if (hashmap[key] % 2 === 1) count++;   }    // if count is greater than 1   if (count > 1) {     return false;   }    return true; }  // Function to get the length of longest // substring whose characters can be // arranged to form a palindromic string function longestSubstring(S) {   let ans = 0;    for (let i = 0; i < S.length; i++) {     let curstr = "";     for (let j = i; j < S.length; j++) {       // Storing the substring       curstr += S[j];        // Checking if it is possible to       // make it a palindrome       if (ispalindromic(curstr) === true) {         // Storing the maximum answer         ans = Math.max(ans, j - i + 1);       }     }   }    return ans; }  // Given String let s = "adbabd";  // Length of given string let n = s.length;  // Function call console.log(longestSubstring(s));  // This code is contributed by lokeshpotta20. 

Output
6

Time Complexity: O(N3 * 26)
Auxiliary Space: O(N2 * 26)

Efficient Approach: The idea is to observe that the string is a palindrome if at most one character occurs an odd number of times. So there is no need to keep the total count of each character. Just knowing that it is occurring even or an odd number of times is enough. To do this, use bit masking since the count of lowercase alphabets is only 26.

  1. Define a bitmask variable mask which tracks if the occurrence of each character is even or odd.
  2. Create a dictionary index that keeps track of the index of each bitmask.
  3. Traverse the given string S. First, convert the characters from 'a' - 'z' to 0 - 25 and store this value in a variable temp. For each occurrence of the character, take Bitwise XOR of 2temp with the mask.
  4. If the character occurs even number of times, its bit in the mask will be off else it will be on. If the mask is currently not in the index, simply assign present index i to bitmask mask in the index.
  5. If the mask is present in the index it means that from the index[mask] to i, the occurrence of all characters is even which is suitable for a palindromic substring. Therefore, update the answer if the length of this segment from the index[mask] to i is greater than the answer.
  6. To check for the substring with one character occurring an odd number of times, iterate a variable j over [0, 25]. Store Bitwise XOR of x with 2j in mask2. 
  7. If mask2 is present in the index, this means that this character is occurring an odd number of times and all characters occur even a number of times in the segment index[mask2] to i, which is also a suitable condition for a palindromic string. Therefore, update our answer with the length of this substring if it is greater than the answer.
  8. Print the maximum length of substring after the above steps.

Below is the implementation of the above approach:

C++
// C++ program for the above approach  #include<bits/stdc++.h> using namespace std;      // Function to get the length of longest  // substring whose characters can be  // arranged to form a palindromic string  int longestSubstring(string s, int n)  {           // To keep track of the last      // index of each xor      map<int, int> index;          // Initialize answer with 0      int answer = 0;       int mask = 0;      index[mask] = -1;       // Now iterate through each character      // of the string      for(int i = 0; i < n; i++)      {                   // Convert the character from          // [a, z] to [0, 25]          int temp = (int)s[i] - 97;           // Turn the temp-th bit on if          // character occurs odd number          // of times and turn off the temp-th          // bit off if the character occurs          // ever number of times          mask ^= (1 << temp);           // If a mask is present in the index          // Therefore a palindrome is          // found from index[mask] to i          if (index[mask])          {              answer = max(answer,                           i - index[mask]);          }           // If x is not found then add its          // position in the index dict.          else             index[mask] = i;           // Check for the palindrome of          // odd length          for(int j = 0; j < 26; j++)          {                           // We cancel the occurrence              // of a character if it occurs              // odd number times              int mask2 = mask ^ (1 << j);              if (index[mask2])              {                  answer =max(answer,                              i - index[mask2]);              }          }      }      return answer;  }           // Driver code  int main ()  {           // Given String      string s = "adbabd";           // Length of given string      int n = s.size();           // Function call      cout << (longestSubstring(s, n));  }  // This code is contributed by Stream_Cipher   
Java
// Java program for the above approach  import java.util.*;  class GFG{      // Function to get the length of longest  // substring whose characters can be  // arranged to form a palindromic string  static int longestSubstring(String s, int n) {          // To keep track of the last      // index of each xor      Map<Integer, Integer> index = new HashMap<>();      // Initialize answer with 0      int answer = 0;      int mask = 0;     index.put(mask, -1);      // Now iterate through each character      // of the string      for(int i = 0; i < n; i++)     {          // Convert the character from          // [a, z] to [0, 25]          int temp = (int)s.charAt(i) - 97;          // Turn the temp-th bit on if          // character occurs odd number          // of times and turn off the temp-th          // bit off if the character occurs          // ever number of times          mask ^= (1 << temp);          // If a mask is present in the index          // Therefore a palindrome is          // found from index[mask] to i          if (index.containsKey(mask))         {              answer = Math.max(answer,                  i - index.get(mask));          }          // If x is not found then add its          // position in the index dict.          else             index.put(mask,i);           // Check for the palindrome of          // odd length          for (int j = 0;j < 26; j++)         {                          // We cancel the occurrence              // of a character if it occurs              // odd number times              int mask2 = mask ^ (1 << j);             if (index.containsKey(mask2))             {                  answer = Math.max(answer,                      i - index.get(mask2));              }         }     }     return answer; }          // Driver code public static void main (String[] args) {          // Given String      String s = "adbabd";          // Length of given string      int n = s.length();          // Function call      System.out.print(longestSubstring(s, n)); } }  // This code is contributed by offbeat 
Python
# Python3 program for the above approach  # Function to get the length of longest # substring whose characters can be # arranged to form a palindromic string def longestSubstring(s: str, n: int):      # To keep track of the last     # index of each xor     index = dict()      # Initialize answer with 0     answer = 0      mask = 0     index[mask] = -1      # Now iterate through each character     # of the string     for i in range(n):          # Convert the character from         # [a, z] to [0, 25]         temp = ord(s[i]) - 97          # Turn the temp-th bit on if         # character occurs odd number         # of times and turn off the temp-th         # bit off if the character occurs         # ever number of times         mask ^= (1 << temp)          # If a mask is present in the index         # Therefore a palindrome is         # found from index[mask] to i         if mask in index.keys():             answer = max(answer,                          i - index[mask])          # If x is not found then add its         # position in the index dict.         else:             index[mask] = i          # Check for the palindrome of         # odd length         for j in range(26):              # We cancel the occurrence             # of a character if it occurs             # odd number times             mask2 = mask ^ (1 << j)             if mask2 in index.keys():                  answer = max(answer,                              i - index[mask2])      return answer   # Driver Code  # Given String s = "adbabd"  # Length of given string n = len(s)  # Function call print(longestSubstring(s, n)) 
C#
// C# program for the above approach  using System.Collections.Generic;  using System;   class GFG{       // Function to get the length of longest  // substring whose characters can be  // arranged to form a palindromic string  static int longestSubstring(string s, int n)  {           // To keep track of the last      // index of each xor      Dictionary<int,                 int> index = new Dictionary<int,                                            int>();                                                 // Initialize answer with 0      int answer = 0;       int mask = 0;      index[mask] = -1;       // Now iterate through each character      // of the string      for(int i = 0; i < n; i++)      {           // Convert the character from          // [a, z] to [0, 25]          int temp = (int)s[i] - 97;           // Turn the temp-th bit on if          // character occurs odd number          // of times and turn off the temp-th          // bit off if the character occurs          // ever number of times          mask ^= (1 << temp);           // If a mask is present in the index          // Therefore a palindrome is          // found from index[mask] to i          if (index.ContainsKey(mask) == true)          {              answer = Math.Max(answer,                                i - index[mask]);          }           // If x is not found then add its          // position in the index dict.          else             index[mask] = i;           // Check for the palindrome of          // odd length          for(int j = 0; j < 26; j++)          {                           // We cancel the occurrence              // of a character if it occurs              // odd number times              int mask2 = mask ^ (1 << j);              if (index.ContainsKey(mask2) == true)              {                  answer = Math.Max(answer,                                    i - index[mask2]);              }          }      }      return answer;  }           // Driver code  public static void Main ()  {           // Given String      string s = "adbabd";           // Length of given string      int n = s.Length;           // Function call      Console.WriteLine(longestSubstring(s, n));  }  }   // This code is contributed by Stream_Cipher 
JavaScript
// JavaScript program for the above approach   // Function to get the length of longest  // substring whose characters can be  // arranged to form a palindromic string  function longestSubstring(s, n) {           // To keep track of the last      // index of each xor      var index = new Map();          // Initialize answer with 0      var answer = 0;       var mask = 0;      index.set(mask, -1);       // Now iterate through each character      // of the string      for (var i = 0; i < n; i++) {                   // Convert the character from          // [a, z] to [0, 25]          var temp = s[i].charCodeAt(0) - 97;           // Toggle the temp-th bit          mask ^= (1 << temp);           // If a mask is present in the index,          // a palindrome is found from index[mask] to i          if (index.has(mask)) {              answer = Math.max(answer, i - index.get(mask));          } else {             index.set(mask, i);          }          // Check for the palindrome of odd length          for (var j = 0; j < 26; j++) {              var mask2 = mask ^ (1 << j);              if (index.has(mask2)) {                  answer = Math.max(answer, i - index.get(mask2));              }          }      }      return answer;  }           // Given String  var s = "adbabd";   // Length of given string  var n = s.length;   // Function call  console.log(longestSubstring(s, n));  

Output
6

Time Complexity: O(N * 26)
Auxiliary Space: O(N * 26)


Next Article
Longest substring whose characters can be rearranged to form a Palindrome

A

aditya_panwar
Improve
Article Tags :
  • Strings
  • Bit Magic
  • Dynamic Programming
  • Mathematical
  • DSA
  • palindrome
  • Algorithms-Dynamic Programming
  • Bit Algorithms
  • substring
Practice Tags :
  • Bit Magic
  • Dynamic Programming
  • Mathematical
  • palindrome
  • Strings

Similar Reads

    Bit Manipulation for Competitive Programming
    Bit manipulation is a technique in competitive programming that involves the manipulation of individual bits in binary representations of numbers. It is a valuable technique in competitive programming because it allows you to solve problems efficiently, often reducing time complexity and memory usag
    15+ min read
    Count set bits in an integer
    Write an efficient program to count the number of 1s in the binary representation of an integer.Examples : Input : n = 6Output : 2Binary representation of 6 is 110 and has 2 set bitsInput : n = 13Output : 3Binary representation of 13 is 1101 and has 3 set bits[Naive Approach] - One by One CountingTh
    15+ min read
    Count total set bits in first N Natural Numbers (all numbers from 1 to N)
    Given a positive integer n, the task is to count the total number of set bits in binary representation of all natural numbers from 1 to n. Examples: Input: n= 3Output: 4Explanation: Numbers from 1 to 3: {1, 2, 3}Binary Representation of 1: 01 -> Set bits = 1Binary Representation of 2: 10 -> Se
    9 min read
    Check whether the number has only first and last bits set
    Given a positive integer n. The problem is to check whether only the first and last bits are set in the binary representation of n.Examples: Input : 9 Output : Yes (9)10 = (1001)2, only the first and last bits are set. Input : 15 Output : No (15)10 = (1111)2, except first and last there are other bi
    4 min read
    Shortest path length between two given nodes such that adjacent nodes are at bit difference 2
    Given an unweighted and undirected graph consisting of N nodes and two integers a and b. The edge between any two nodes exists only if the bit difference between them is 2, the task is to find the length of the shortest path between the nodes a and b. If a path does not exist between the nodes a and
    7 min read
    Calculate Bitwise OR of two integers from their given Bitwise AND and Bitwise XOR values
    Given two integers X and Y, representing Bitwise XOR and Bitwise AND of two positive integers, the task is to calculate the Bitwise OR value of those two positive integers.Examples:Input: X = 5, Y = 2 Output: 7 Explanation: If A and B are two positive integers such that A ^ B = 5, A & B = 2, the
    7 min read
    Unset least significant K bits of a given number
    Given an integer N, the task is to print the number obtained by unsetting the least significant K bits from N. Examples: Input: N = 200, K=5Output: 192Explanation: (200)10 = (11001000)2 Unsetting least significant K(= 5) bits from the above binary representation, the new number obtained is (11000000
    4 min read
    Find all powers of 2 less than or equal to a given number
    Given a positive number N, the task is to find out all the perfect powers of two which are less than or equal to the given number N. Examples: Input: N = 63 Output: 32 16 8 4 2 1 Explanation: There are total of 6 powers of 2, which are less than or equal to the given number N. Input: N = 193 Output:
    6 min read
    Powers of 2 to required sum
    Given an integer N, task is to find the numbers which when raised to the power of 2 and added finally, gives the integer N. Example : Input : 71307 Output : 0, 1, 3, 7, 9, 10, 12, 16 Explanation : 71307 = 2^0 + 2^1 + 2^3 + 2^7 + 2^9 + 2^10 + 2^12 + 2^16 Input : 1213 Output : 0, 2, 3, 4, 5, 7, 10 Exp
    10 min read
    Print bitwise AND set of a number N
    Given a number N, print all the numbers which are a bitwise AND set of the binary representation of N. Bitwise AND set of a number N is all possible numbers x smaller than or equal N such that N & i is equal to x for some number i. Examples : Input : N = 5Output : 0, 1, 4, 5 Explanation: 0 &
    8 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences