Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Questions on Array
  • Practice Array
  • MCQs on Array
  • Tutorial on Array
  • Types of Arrays
  • Array Operations
  • Subarrays, Subsequences, Subsets
  • Reverse Array
  • Static Vs Arrays
  • Array Vs Linked List
  • Array | Range Queries
  • Advantages & Disadvantages
Open In App
Next Article:
Longest Subarray With Sum K
Next article icon

Longest subarray having sum K | Set 2

Last Updated : 29 Nov, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] of size N containing integers. The task is to find the length of the longest sub-array having sum equal to the given value K.

Examples: 

Input: arr[] = {2, 3, 4, 2, 1, 1}, K = 10 
Output: 4 
Explanation: 
The subarray {3, 4, 2, 1} gives summation as 10.

Input: arr[] = {6, 8, 14, 9, 4, 11, 10}, K = 13 
Output: 2 
Explanation: 
The subarray {9, 4} gives summation as 13. 
 

Naive Approach: Please refer to this article.
Time Complexity: O(N2) 
Auxiliary Space: O(1)

Efficient Approach: The idea is to use Binary Search to find the subarray of maximum length having sum K. Below are the steps:

  1. Create a prefix sum array(say pref[]) from the given array arr[].
  2. For each element in the prefix array pref[] do Binary Search: 
    • Initialize ans, start and end variables as -1, 0, and N respectively.
    • Find the middle index(say mid).
    • If pref[mid] – val ? K then update the start variable to mid + 1 and ans to mid.
    • Else update the end variable to mid – 1.
  3. Return the value of ans from the above binary search.
  4. If current subarray length is less than (ans – i), then update the maximum length to (ans – i).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// To store the prefix sum array
vector<int> v;
 
// Function for searching the
// lower bound of the subarray
int bin(int val, int k, int n)
{
    int lo = 0;
    int hi = n;
    int mid;
    int ans = -1;
 
    // Iterate until low less
    // than equal to high
    while (lo <= hi) {
        mid = lo + (hi - lo) / 2;
 
        // For each mid finding sum
        // of sub array less than
        // or equal to k
        if (v[mid] - val <= k) {
            lo = mid + 1;
            ans = mid;
        }
        else
            hi = mid - 1;
    }
 
    // Return the final answer
    return ans;
}
 
// Function to find the length of
// subarray with sum K
void findSubarraySumK(int arr[], int N, int K)
{
 
    // Initialize sum to 0
    int sum = 0;
    v.push_back(0);
 
    // Push the prefix sum of the
    // array arr[] in prefix[]
    for (int i = 0; i < N; i++) {
 
        sum += arr[i];
        v.push_back(sum);
    }
 
    int l = 0, ans = 0, r;
 
    for (int i = 0; i < N; i++) {
 
        // Search r for each i
        r = bin(v[i], K, N);
 
        // Update ans
        ans = max(ans, r - i);
    }
 
    // Print the length of subarray
    // found in the array
    cout << ans;
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 6, 8, 14, 9, 4, 11, 10 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Given sum K
    int K = 13;
 
    // Function Call
    findSubarraySumK(arr, N, K);
 
    return 0;
}
 
 

Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
    // To store the prefix sum array
    static Vector<Integer> v = new Vector<Integer>();
 
    // Function for searching the
    // lower bound of the subarray
    static int bin(int val, int k, int n)
    {
        int lo = 0;
        int hi = n;
        int mid;
        int ans = -1;
 
        // Iterate until low less
        // than equal to high
        while (lo <= hi) {
            mid = lo + (hi - lo) / 2;
 
            // For each mid finding sum
            // of sub array less than
            // or equal to k
            if (v.get(mid) - val <= k) {
                lo = mid + 1;
                ans = mid;
            }
            else
                hi = mid - 1;
        }
 
        // Return the final answer
        return ans;
    }
 
    // Function to find the length of
    // subarray with sum K
    static void findSubarraySumK(int arr[], int N, int K)
    {
 
        // Initialize sum to 0
        int sum = 0;
        v.add(0);
 
        // Push the prefix sum of the
        // array arr[] in prefix[]
        for (int i = 0; i < N; i++) {
            sum += arr[i];
            v.add(sum);
        }
 
        int l = 0, ans = 0, r;
 
        for (int i = 0; i < v.size(); i++) {
 
            // Search r for each i
            r = bin(v.get(i), K, N);
 
            // Update ans
            ans = Math.max(ans, r - i);
        }
 
        // Print the length of subarray
        // found in the array
        System.out.print(ans);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Given array arr[]
        int arr[] = { 6, 8, 14, 9, 4, 11, 10 };
 
        int N = arr.length;
 
        // Given sum K
        int K = 13;
 
        // Function call
        findSubarraySumK(arr, N, K);
    }
}
 
// This code is contributed by gauravrajput1
 
 

Python3




# Python3 program for the above approach
 
# To store the prefix sum1 array
v = []
 
# Function for searching the
# lower bound of the subarray
 
 
def bin1(val, k, n):
 
    global v
    lo = 0
    hi = n
    mid = 0
    ans = -1
 
    # Iterate until low less
    # than equal to high
    while (lo <= hi):
        mid = lo + ((hi - lo) // 2)
 
        # For each mid finding sum1
        # of sub array less than
        # or equal to k
        if (v[mid] - val <= k):
            lo = mid + 1
            ans = mid
        else:
            hi = mid - 1
 
    # Return the final answer
    return ans
 
# Function to find the length of
# subarray with sum1 K
 
 
def findSubarraysum1K(arr, N, K):
 
    global v
 
    # Initialize sum1 to 0
    sum1 = 0
    v.append(0)
 
    # Push the prefix sum1 of the
    # array arr[] in prefix[]
    for i in range(N):
        sum1 += arr[i]
        v.append(sum1)
 
    l = 0
    ans = 0
    r = 0
 
    for i in range(len(v)):
 
        # Search r for each i
        r = bin1(v[i], K, N)
 
        # Update ans
        ans = max(ans, r - i)
 
    # Print the length of subarray
    # found in the array
    print(ans)
 
 
# Driver Code
if __name__ == '__main__':
 
    # Given array arr[]
    arr = [6, 8, 14, 9, 4, 11, 10]
 
    N = len(arr)
 
    # Given sum1 K
    K = 13
 
    # Function Call
    findSubarraysum1K(arr, N, K)
 
# This code is contributed by ipg2016107
 
 

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG {
 
    // To store the prefix sum array
    static List<int> v = new List<int>();
 
    // Function for searching the
    // lower bound of the subarray
    static int bin(int val, int k, int n)
    {
        int lo = 0;
        int hi = n;
        int mid;
        int ans = -1;
 
        // Iterate until low less
        // than equal to high
        while (lo <= hi) {
            mid = lo + (hi - lo) / 2;
 
            // For each mid finding sum
            // of sub array less than
            // or equal to k
            if (v[mid] - val <= k) {
                lo = mid + 1;
                ans = mid;
            }
            else
                hi = mid - 1;
        }
 
        // Return the final answer
        return ans;
    }
 
    // Function to find the length of
    // subarray with sum K
    static void findSubarraySumK(int[] arr, int N, int K)
    {
 
        // Initialize sum to 0
        int sum = 0;
        v.Add(0);
 
        // Push the prefix sum of the
        // array []arr in prefix[]
        for (int i = 0; i < N; i++) {
            sum += arr[i];
            v.Add(sum);
        }
 
        int ans = 0, r;
 
        for (int i = 0; i < v.Count; i++) {
 
            // Search r for each i
            r = bin(v[i], K, N);
 
            // Update ans
            ans = Math.Max(ans, r - i);
        }
 
        // Print the length of subarray
        // found in the array
        Console.Write(ans);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
 
        // Given array []arr
        int[] arr = { 6, 8, 14, 9, 4, 11, 10 };
 
        int N = arr.Length;
 
        // Given sum K
        int K = 13;
 
        // Function call
        findSubarraySumK(arr, N, K);
    }
}
 
// This code is contributed by gauravrajput1
 
 

Javascript




<script>
// Javascript program for the above approach
 
// To store the prefix sum array
let v = [];
 
// Function for searching the
// lower bound of the subarray
function bin(val, k, n)
{
    let lo = 0;
    let hi = n;
    let mid;
    let ans = -1;
 
    // Iterate until low less
    // than equal to high
    while (lo <= hi) {
        mid = lo + parseInt((hi - lo) / 2);
 
        // For each mid finding sum
        // of sub array less than
        // or equal to k
        if (v[mid] - val <= k) {
            lo = mid + 1;
            ans = mid;
        }
        else
            hi = mid - 1;
    }
 
    // Return the final answer
    return ans;
}
 
// Function to find the length of
// subarray with sum K
function findSubarraySumK(arr, N, K)
{
 
    // Initialize sum to 0
    let sum = 0;
    v.push(0);
 
    // Push the prefix sum of the
    // array arr[] in prefix[]
    for (let i = 0; i < N; i++) {
 
        sum += arr[i];
        v.push(sum);
    }
 
    let l = 0, ans = 0, r;
 
    for (let i = 0; i < N; i++) {
 
        // Search r for each i
        r = bin(v[i], K, N);
 
        // Update ans
        ans = Math.max(ans, r - i);
    }
 
    // Print the length of subarray
    // found in the array
    document.write(ans);
}
 
// Driver Code
    // Given array arr[]
    let arr = [ 6, 8, 14, 9, 4, 11, 10 ];
 
    let N = arr.length;
 
    // Given sum K
    let K = 13;
 
    // Function Call
    findSubarraySumK(arr, N, K);
     
</script>
 
 
Output
2       

Time Complexity: O(N*log2N) 
Auxiliary Space: O(N)

Efficient approach: For a O(N) approach, please refer to the efficient approach of this article.

Hashmap approach in python:

Approach:

  • Initialize a hashmap prefix_sum with initial key-value pair of 0: -1. The keys in this hashmap represent the prefix sum of the elements in the array till a certain index, and the values represent the index at which that prefix sum was first seen.
  • Initialize curr_sum and max_len to 0.
  • Traverse through the array using a loop and at each iteration, update the curr_sum by adding the current element.
  • Check if curr_sum – K is present in the prefix_sum hashmap. If it is, then update max_len to be the maximum of its current value and i – prefix_sum[curr_sum – K], where i is the current index.
  • Check if curr_sum is not already present in the prefix_sum hashmap. If it is not, then add a new key-value pair to the hashmap with curr_sum as the key and i as the value.
  • Return max_len.

C++




#include <iostream>
#include <unordered_map>
#include <vector>
 
int LongestSubarraySum(const std::vector<int>& arr, int K) {
    int n = arr.size();
    std::unordered_map<int, int> prefixSum;
    int currSum = 0;
    int maxLen = 0;
 
    for (int i = 0; i < n; i++) {
        currSum += arr[i];
         
        // If (currSum - K) is in the prefixSum, update maxLen
        if (prefixSum.find(currSum - K) != prefixSum.end()) {
            maxLen = std::max(maxLen, i - prefixSum[currSum - K]);
        }
 
        // If currSum is not in prefixSum, add it with the current index
        if (prefixSum.find(currSum) == prefixSum.end()) {
            prefixSum[currSum] = i;
        }
    }
 
    return maxLen;
}
 
int main() {
    // Example usage
    std::vector<int> arr1 = {2, 3, 4, 2, 1, 1};
    int K1 = 10;
    std::cout << "Longest subarray length with sum " << K1 << " in [";
    for (int i = 0; i < arr1.size(); i++) {
        std::cout << arr1[i];
        if (i < arr1.size() - 1) {
            std::cout << ", ";
        }
    }
    std::cout << "] is: " << LongestSubarraySum(arr1, K1) << std::endl; // Output: 4
 
    std::vector<int> arr2 = {6, 8, 14, 9, 4, 11, 10};
    int K2 = 13;
    std::cout << "Longest subarray length with sum " << K2 << " in [";
    for (int i = 0; i < arr2.size(); i++) {
        std::cout << arr2[i];
        if (i < arr2.size() - 1) {
            std::cout << ", ";
        }
    }
    std::cout << "] is: " << LongestSubarraySum(arr2, K2) << std::endl; // Output: 2
 
    return 0;
}
 
 

Java




import java.util.HashMap;
import java.util.Map;
 
public class Main {
    public static int LongestSubarraySum(int[] arr, int K) {
        int n = arr.length;
        Map<Integer, Integer> prefixSum = new HashMap<>();
        int currSum = 0;
        int maxLen = 0;
 
        for (int i = 0; i < n; i++) {
            currSum += arr[i];
 
            // If (currSum - K) is in prefixSum, update maxLen
            if (prefixSum.containsKey(currSum - K)) {
                maxLen = Math.max(maxLen, i - prefixSum.get(currSum - K));
            }
 
            // If currSum is not in prefixSum, add it with the current index
            if (!prefixSum.containsKey(currSum)) {
                prefixSum.put(currSum, i);
            }
        }
 
        return maxLen;
    }
 
    public static void main(String[] args) {
        // Example usage
        int[] arr1 = {2, 3, 4, 2, 1, 1};
        int K1 = 10;
        System.out.print("Longest subarray length with sum " + K1 + " in [");
        for (int i = 0; i < arr1.length; i++) {
            System.out.print(arr1[i]);
            if (i < arr1.length - 1) {
                System.out.print(", ");
            }
        }
        System.out.println("] is: " + LongestSubarraySum(arr1, K1)); // Output: 4
 
        int[] arr2 = {6, 8, 14, 9, 4, 11, 10};
        int K2 = 13;
        System.out.print("Longest subarray length with sum " + K2 + " in [");
        for (int i = 0; i < arr2.length; i++) {
            System.out.print(arr2[i]);
            if (i < arr2.length - 1) {
                System.out.print(", ");
            }
        }
        System.out.println("] is: " + LongestSubarraySum(arr2, K2)); // Output: 2
    }
}
 
 

Python3




def longest_subarray_sum(arr, K):
    n = len(arr)
    prefix_sum = {0: -1}
    curr_sum = 0
    max_len = 0
 
    for i in range(n):
        curr_sum += arr[i]
        if curr_sum - K in prefix_sum:
            max_len = max(max_len, i - prefix_sum[curr_sum - K])
        if curr_sum not in prefix_sum:
            prefix_sum[curr_sum] = i
 
    return max_len
 
# example usage
arr1 = [2, 3, 4, 2, 1, 1]
K1 = 10
print("Longest subarray length with sum", K1, "in", arr1, "is:", longest_subarray_sum(arr1, K1)) # output: 4
 
arr2 = [6, 8, 14, 9, 4, 11, 10]
K2 = 13
print("Longest subarray length with sum", K2, "in", arr2, "is:", longest_subarray_sum(arr2, K2)) # output: 2
 
 

C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class Program
{
    static int LongestSubarraySum(List<int> arr, int K)
    {
        int n = arr.Count;
        Dictionary<int, int> prefixSum = new Dictionary<int, int>();
        int currSum = 0;
        int maxLen = 0;
 
        for (int i = 0; i < n; i++)
        {
            currSum += arr[i];
 
            // If (currSum - K) is in prefixSum, update maxLen
            if (prefixSum.ContainsKey(currSum - K))
            {
                maxLen = Math.Max(maxLen, i - prefixSum[currSum - K]);
            }
 
            // If currSum is not in prefixSum, add it with the current index
            if (!prefixSum.ContainsKey(currSum))
            {
                prefixSum[currSum] = i;
            }
        }
 
        return maxLen;
    }
 
    static void Main()
    {
        // Example usage
        List<int> arr1 = new List<int> { 2, 3, 4, 2, 1, 1 };
        int K1 = 10;
        Console.Write("Longest subarray length with sum " + K1 + " in [");
        for (int i = 0; i < arr1.Count; i++)
        {
            Console.Write(arr1[i]);
            if (i < arr1.Count - 1)
            {
                Console.Write(", ");
            }
        }
        Console.WriteLine("] is: " + LongestSubarraySum(arr1, K1)); // Output: 4
 
        List<int> arr2 = new List<int> { 6, 8, 14, 9, 4, 11, 10 };
        int K2 = 13;
        Console.Write("Longest subarray length with sum " + K2 + " in [");
        for (int i = 0; i < arr2.Count; i++)
        {
            Console.Write(arr2[i]);
            if (i < arr2.Count - 1)
            {
                Console.Write(", ");
            }
        }
        Console.WriteLine("] is: " + LongestSubarraySum(arr2, K2)); // Output: 2
    }
}
 
 

Javascript




// Javascript Code
 
function LongestSubarraySum(arr, K) {
    let n = arr.length;
    let prefixSum = new Map();
    let currSum = 0;
    let maxLen = 0;
 
    for (let i = 0; i < n; i++) {
        currSum += arr[i];
 
        // If (currSum - K) is in prefixSum, update maxLen
        if (prefixSum.has(currSum - K)) {
            maxLen = Math.max(maxLen, i - prefixSum.get(currSum - K));
        }
 
        // If currSum is not in prefixSum, add it with the current index
        if (!prefixSum.has(currSum)) {
            prefixSum.set(currSum, i);
        }
    }
 
    return maxLen;
}
 
// Example usage
let arr1 = [2, 3, 4, 2, 1, 1];
let K1 = 10;
console.log(`Longest subarray length with sum ${K1} in [${arr1}] is: ${LongestSubarraySum(arr1, K1)}`); // Output: 4
 
let arr2 = [6, 8, 14, 9, 4, 11, 10];
let K2 = 13;
console.log(`Longest subarray length with sum ${K2} in [${arr2}] is: ${LongestSubarraySum(arr2, K2)}`); // Output: 2
 
 
Output
Longest subarray length with sum 10 in [2, 3, 4, 2, 1, 1] is: 4 Longest subarray length with sum 13 in [6, 8, 14, 9, 4, 11, 10] is: 2       

The time complexity of this approach is O(n) as we are traversing through the array only once, 
the space complexity is O(n) as we are using a hashmap to store prefix sums.



Next Article
Longest Subarray With Sum K
author
asknishant
Improve
Article Tags :
  • Algorithms
  • Arrays
  • Competitive Programming
  • Divide and Conquer
  • DSA
  • Searching
  • Sorting
  • Binary Search
  • prefix
  • prefix-sum
  • subarray
  • subarray-sum
Practice Tags :
  • Algorithms
  • Arrays
  • Binary Search
  • Divide and Conquer
  • prefix-sum
  • Searching
  • Sorting

Similar Reads

  • Longest subarray having maximum sum
    Given an array arr[] containing n integers. The problem is to find the length of the subarray having maximum sum. If there exists two or more subarrays with maximum sum then print the length of the longest subarray.Examples: Input : arr[] = {5, -2, -1, 3, -4}Output : 4There are two subarrays with ma
    12 min read
  • Longest subarray having sum of elements atmost K
    Given an array arr[] of size N and an integer K, the task is to find the length of the largest subarray having the sum of its elements at most K, where K > 0. Examples: Input: arr[] = {1, 2, 1, 0, 1, 1, 0}, k = 4Output: 5Explanation: {1, 2, 1} => sum = 4, length = 3 {1, 2, 1, 0}, {2, 1, 0, 1}
    12 min read
  • Largest subarray having sum greater than k
    Given an array of integers and a value k, the task is to find the length of the largest subarray having a sum greater than k. Examples: Input: arr[] = [-2, 1, 6, -3], k = 5Output: 2Explanation: The largest subarray with a sum greater than 5 is {1, 6}. Input: arr[] = [2, -3, 3, 2, 0, -1], k = 3Output
    15 min read
  • Longest Subarray With Sum K
    Given an array arr[] of size n containing integers, the task is to find the length of the longest subarray having sum equal to the given value k. Note: If there is no subarray with sum equal to k, return 0. Examples: Input: arr[] = [10, 5, 2, 7, 1, -10], k = 15Output: 6Explanation: Subarrays with su
    11 min read
  • Count Subarrays having Sum K
    Given an unsorted array of integers, the task is to find the number of subarrays having a sum exactly equal to a given number k. Examples: Input : arr[] = [10, 2, -2, -20, 10], k = -10Output : 3Explanation: Subarrays: arr[0...3], arr[1...4], arr[3...4] have sum equal to -10. Input : arr[] = [9, 4, 2
    8 min read
  • Longest Subarray With Sum Divisible By K
    Given an arr[] containing n integers and a positive integer k, he problem is to find the longest subarray's length with the sum of the elements divisible by k. Examples: Input: arr[] = [2, 7, 6, 1, 4, 5], k = 3Output: 4Explanation: The subarray [7, 6, 1, 4] has sum = 18, which is divisible by 3. Inp
    10 min read
  • Longest Subarray with sum differences ≤ K
    Given a sorted array arr[] of size N, the task is to find the length of the longest subarray and print the subarray such that the sum of the differences of the maximum element of the chosen subarray with all other elements of that same subarray is ≤ K.i.e. ∑(amax-ai) ≤ K, for that given subarray. Ex
    7 min read
  • Largest sum subarray of size at least k
    Given an array and an integer k, the task is to find the sum of elements of a subarray containing at least k elements which has the largest sum. Examples: Input : arr[] = {-4, -2, 1, -3}, k = 2Output : -1Explanation : The sub array is {-2, 1}. Input : arr[] = {1, 1, 1, 1, 1, 1} , k = 2Output : 6 Exp
    14 min read
  • Longest Subarray with 0 Sum
    Given an array arr[] of size n, the task is to find the length of the longest subarray with sum equal to 0. Examples: Input: arr[] = {15, -2, 2, -8, 1, 7, 10, 23}Output: 5Explanation: The longest subarray with sum equals to 0 is {-2, 2, -8, 1, 7} Input: arr[] = {1, 2, 3}Output: 0Explanation: There i
    10 min read
  • Length of longest subarray having sum in given range [L, R]
    Given an array arr[] of N integers, find the length of the longest subarray having sum in the range [L, R]. Examples: Input: arr[] = {1, 4, 6}, L = 3, R = 8Output: 2Explanation: The valid subarrays with there sum in range [3, 8] are {1, 4}, {4}, {6}. Longest subarray among them is {1, 4} having its
    7 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences