Longest Consecutive Subsequence
Last Updated : 31 Dec, 2024
Given an array of integers, the task is to find the length of the longest subsequence such that elements in the subsequence are consecutive integers, the consecutive numbers can be in any order.
Examples:
Input: arr[] = [2, 6, 1, 9, 4, 5, 3]
Output: 6
Explanation: The consecutive numbers here are from 1 to 6. These 6 numbers form the longest consecutive subsequence [2, 6, 1, 4, 5, 3].
Input: arr[] = [1, 9, 3, 10, 4, 20, 2]
Output: 4
Explanation: The subsequence [1, 3, 4, 2] is the longest subsequence of consecutive elements
Input: arr[] = [36, 41, 56, 35, 44, 33, 34, 92, 43, 32, 42]
Output: 5
Explanation: The subsequence [36, 35, 33, 34, 32] is the longest subsequence of consecutive elements.
[Naive Approach] Using Sorting - O(n*log n) Time and O(1) Space
The idea is to sort the array and find the longest subarray with consecutive elements. Initialize the consecutive count with 1 and start iterating over the sorted array from the second element. For each element arr[i], we can have three cases:
- arr[i] = arr[i - 1], then the ith element is simply a duplicate element so skip it.
- arr[i] = arr[i - 1] + 1, then increase the consecutive count and update result if consecutive count is greater than result.
- arr[i] > arr[i - 1], then reset the consecutive count to 1.
After iterating over all the elements, return the result.
C++ // C++ program to find longest consecutive subsequence #include <iostream> #include <vector> #include <algorithm> using namespace std; int longestConsecutive(vector<int>& arr) { // sort the array sort(arr.begin(), arr.end()); int res = 1, cnt = 1; // find the maximum length by traversing the array for (int i = 1; i < arr.size(); i++) { // Skip duplicates if (arr[i] == arr[i-1]) continue; // Check if the current element is equal // to previous element + 1 if (arr[i] == arr[i - 1] + 1) { cnt++; } else { // reset the count cnt = 1; } // update the result res = max(res, cnt); } return res; } int main() { vector<int> arr = { 2, 6, 1, 9, 4, 5, 3}; cout << longestConsecutive(arr); return 0; }
C // C program to find longest consecutive subsequence #include <stdio.h> #include <stdlib.h> // Function to compare two integers (used in qsort) int compare(const void *a, const void *b) { return (*(int*)a - *(int*)b); } // Function to find the longest consecutive subsequence int longestConsecutive(int arr[], int n) { // Sort the array qsort(arr, n, sizeof(int), compare); int res = 1, cnt = 1; // Find the maximum length by traversing the array for (int i = 1; i < n; i++) { // Skip duplicates if (arr[i] == arr[i - 1]) continue; // Check if the current element is equal // to previous element + 1 if (arr[i] == arr[i - 1] + 1) { cnt++; } else { // Reset the count cnt = 1; } // Update the result if (cnt > res) { res = cnt; } } return res; } int main() { int arr[] = { 2, 6, 1, 9, 4, 5, 3 }; int n = sizeof(arr) / sizeof(arr[0]); printf("%d\n", longestConsecutive(arr, n)); return 0; }
Java // Java program to find longest consecutive subsequence import java.util.Arrays; class GfG { static int longestConsecutive(int[] arr) { // Sort the array Arrays.sort(arr); int res = 1, cnt = 1; // Find the maximum length by traversing the array for (int i = 1; i < arr.length; i++) { // Skip duplicates if (arr[i] == arr[i - 1]) continue; // Check if the current element is equal // to previous element + 1 if (arr[i] == arr[i - 1] + 1) { cnt++; } else { // Reset the count cnt = 1; } // Update the result res = Math.max(res, cnt); } return res; } public static void main(String[] args) { int[] arr = { 2, 6, 1, 9, 4, 5, 3 }; System.out.println(longestConsecutive(arr)); } }
Python # Python program to find longest consecutive subsequence def longestConsecutive(arr): # Sort the array arr.sort() res = 1 cnt = 1 # Find the maximum length by traversing the array for i in range(1, len(arr)): # Skip duplicates if arr[i] == arr[i - 1]: continue # Check if the current element is equal # to previous element + 1 if arr[i] == arr[i - 1] + 1: cnt += 1 else: # Reset the count cnt = 1 # Update the result res = max(res, cnt) return res if __name__ == "__main__": arr = [2, 6, 1, 9, 4, 5, 3] print(longestConsecutive(arr))
C# // C# program to find longest consecutive subsequence using System; using System.Linq; class GfG { static int longestConsecutive(int[] arr) { // Sort the array Array.Sort(arr); int res = 1, cnt = 1; // Find the maximum length by traversing the array for (int i = 1; i < arr.Length; i++) { // Skip duplicates if (arr[i] == arr[i - 1]) continue; // Check if the current element is equal // to previous element + 1 if (arr[i] == arr[i - 1] + 1) { cnt++; } else { // Reset the count cnt = 1; } // Update the result res = Math.Max(res, cnt); } return res; } static void Main(string[] args) { int[] arr = { 2, 6, 1, 9, 4, 5, 3 }; Console.WriteLine(longestConsecutive(arr)); } }
JavaScript // JavaScript program to find longest consecutive subsequence function longestConsecutive(arr) { // Sort the array arr.sort((a, b) => a - b); let res = 1, cnt = 1; // Find the maximum length by traversing the array for (let i = 1; i < arr.length; i++) { // Skip duplicates if (arr[i] === arr[i - 1]) continue; // Check if the current element is equal // to previous element + 1 if (arr[i] === arr[i - 1] + 1) { cnt++; } else { // Reset the count cnt = 1; } // Update the result res = Math.max(res, cnt); } return res; } // Driver Code const arr = [2, 6, 1, 9, 4, 5, 3]; console.log(longestConsecutive(arr));
[Expected Approach] Using Hashing - O(n) Time and O(n) Space
The idea is to use Hashing. We first insert all elements in a Hash Set. Then, traverse over all the elements and check if the current element can be a starting element of a consecutive subsequence. If it is then start from X and keep on removing elements X + 1, X + 2 .... to find a consecutive subsequence.
To check if the current element, say X can be a starting element, check if (X - 1) is present in the set. If (X - 1) is present in the set, then X cannot be starting of a consecutive subsequence.
C++ // C++ program to find longest consecutive subsequence #include <iostream> #include <unordered_set> #include <vector> using namespace std; int longestConsecutive(vector<int> &arr) { unordered_set<int> st; int res = 0; // Hash all the array elements for (int val: arr) st.insert(val); // check each possible sequence from the start then update optimal length for (int val: arr) { // if current element is the starting element of a sequence if (st.find(val) != st.end() && st.find(val-1) == st.end()) { // Then check for next elements in the sequence int cur = val, cnt = 0; while (st.find(cur) != st.end()) { // Remove this number to avoid recomputation st.erase(cur); cur++; cnt++; } // update optimal length res = max(res, cnt); } } return res; } int main() { vector<int> arr = {2, 6, 1, 9, 4, 5, 3}; cout << longestConsecutive(arr); return 0; }
Java // Java program to find longest consecutive subsequence import java.util.*; class GfG { static int longestConsecutive(int[] arr) { Set<Integer> st = new HashSet<>(); int res = 0; // Hash all the array elements for (int val : arr) st.add(val); // Check each possible sequence from the start then update optimal length for (int val : arr) { // If current element is the starting element of a sequence if (st.contains(val) && !st.contains(val - 1)) { // Then check for next elements in the sequence int cur = val, cnt = 0; while (st.contains(cur)) { // Remove this number to avoid recomputation st.remove(cur); cur++; cnt++; } // Update optimal length res = Math.max(res, cnt); } } return res; } public static void main(String[] args) { int[] arr = {2, 6, 1, 9, 4, 5, 3}; System.out.println(longestConsecutive(arr)); } }
Python # Python program to find longest consecutive subsequence def longestConsecutive(arr): st = set() res = 0 # Hash all the array elements for val in arr: st.add(val) # Check each possible sequence from the start # then update length for val in arr: # If current element is the starting element of a sequence if val in st and (val - 1) not in st: # Then check for next elements in the sequence cur = val cnt = 0 while cur in st: # Remove this number to avoid recomputation st.remove(cur) cur += 1 cnt += 1 # Update optimal length res = max(res, cnt) return res if __name__ == "__main__": arr = [2, 6, 1, 9, 4, 5, 3] print(longestConsecutive(arr))
C# // C# program to find longest consecutive subsequence using System; using System.Collections.Generic; class GfG { static int longestConsecutive(int[] arr) { HashSet<int> st = new HashSet<int>(); int res = 0; // Hash all the array elements foreach (int val in arr) st.Add(val); // Check each possible sequence from the start then update optimal length foreach (int val in arr) { // If current element is the starting element of a sequence if (st.Contains(val) && !st.Contains(val - 1)) { // Then check for next elements in the sequence int cur = val, cnt = 0; while (st.Contains(cur)) { // Remove this number to avoid recomputation st.Remove(cur); cur++; cnt++; } // Update optimal length res = Math.Max(res, cnt); } } return res; } static void Main(string[] args) { int[] arr = {2, 6, 1, 9, 4, 5, 3}; Console.WriteLine(longestConsecutive(arr)); } }
JavaScript // JavaScript program to find longest consecutive subsequence function longestConsecutive(arr) { let st = new Set(); let res = 0; // Hash all the array elements for (let val of arr) { st.add(val); } // Check each possible sequence from the start then update // optimal length for (let val of arr) { // If current element is the starting element of a sequence if (st.has(val) && !st.has(val - 1)) { // Then check for next elements in the sequence let cur = val, cnt = 0; while (st.has(cur)) { // Remove this number to avoid recomputation st.delete(cur); cur++; cnt++; } // Update optimal length res = Math.max(res, cnt); } } return res; } // Driver Code const arr = [2, 6, 1, 9, 4, 5, 3]; console.log(longestConsecutive(arr));
Similar Reads
Longest Increasing consecutive subsequence Given N elements, write a program that prints the length of the longest increasing consecutive subsequence. Examples: Input : a[] = {3, 10, 3, 11, 4, 5, 6, 7, 8, 12} Output : 6 Explanation: 3, 4, 5, 6, 7, 8 is the longest increasing subsequence whose adjacent element differs by one. Input : a[] = {6
10 min read
Longest Bitonic Subsequence Given an array arr[] containing n positive integers, a subsequence of numbers is called bitonic if it is first strictly increasing, then strictly decreasing. The task is to find the length of the longest bitonic subsequence. Note: Only strictly increasing (no decreasing part) or a strictly decreasin
15+ min read
Longest Common Subsequence (LCS) Given two strings, s1 and s2, the task is to find the length of the Longest Common Subsequence. If there is no common subsequence, return 0. A subsequence is a string generated from the original string by deleting 0 or more characters, without changing the relative order of the remaining characters.
15+ min read
Longest Increasing consecutive subsequence | Set-2 Given an array arr[] of N elements, the task is to find the length of the longest increasing subsequence whose adjacent element difference is one. Examples: Input: arr[] = {3, 10, 3, 11, 4, 5, 6, 7, 8, 12} Output: 6 Explanation: The subsequence {3, 4, 5, 6, 7, 8} is the longest increasing subsequenc
5 min read
Printing longest Increasing consecutive subsequence Given n elements, write a program that prints the longest increasing subsequence whose adjacent element difference is one. Examples: Input : a[] = {3, 10, 3, 11, 4, 5, 6, 7, 8, 12} Output : 3 4 5 6 7 8 Explanation: 3, 4, 5, 6, 7, 8 is the longest increasing subsequence whose adjacent element differs
8 min read