Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Practice Mathematical Algorithm
  • Mathematical Algorithms
  • Pythagorean Triplet
  • Fibonacci Number
  • Euclidean Algorithm
  • LCM of Array
  • GCD of Array
  • Binomial Coefficient
  • Catalan Numbers
  • Sieve of Eratosthenes
  • Euler Totient Function
  • Modular Exponentiation
  • Modular Multiplicative Inverse
  • Stein's Algorithm
  • Juggler Sequence
  • Chinese Remainder Theorem
  • Quiz on Fibonacci Numbers
Open In App
Next Article:
Find the other number when LCM and HCF given
Next article icon

LCM of given array elements

Last Updated : 12 Feb, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

In this article, we will learn how to find the LCM of given array elements.

Given an array of n numbers, find the LCM of it. 

 Example:

Input : {1, 2, 8, 3}
Output : 24
LCM of 1, 2, 8 and 3 is 24

Input : {2, 7, 3, 9, 4}
Output : 252

Table of Content

  • [Naive Approach] Iterative LCM Calculation – O(n * log(min(a, b))) Time and O(n*log(min(a, b))) Space
  • [Alternate Approach] Recursive LCM Calculation – O(n * log(max(a, b)) Time and O(n) Space
  • [Expected Approach] Using reduce and gcd functions – O(n log n) Time and O(1) Space
  • [Efficient Approach] Using Euclidean Algorithm for GCD – O(n log n) Time and O(1) Space

[Naive Approach] Iterative LCM Calculation – O(n * log(min(a, b))) Time and O(n*log(min(a, b))) Space

We know, [Tex]LCM(a, b)=\frac{a*b}{gcd(a, b)}                                        [/Tex]
The above relation only holds for two numbers, 
[Tex]LCM(a, b, c)\neq \frac{a*b*c}{gcd(a, b, c)}                [/Tex]

The idea here is to extend our relation for more than 2 numbers. Let’s say we have an array arr[] that contains n elements whose LCM needed to be calculated.

The main steps of our algorithm are: 

  1. Initialize ans = arr[0].
  2. Iterate over all the elements of the array i.e. from i = 1 to i = n-1 
    At the ith iteration ans = LCM(arr[0], arr[1], …….., arr[i-1]). This can be done easily as LCM(arr[0], arr[1], …., arr[i]) = LCM(ans, arr[i]). Thus at i’th iteration we just have to do ans = LCM(ans, arr[i]) = ans x arr[i] / gcd(ans, arr[i]) 
     

Below is the implementation of the above algorithm : 

C++
// C++ program to find LCM of n elements #include <bits/stdc++.h> using namespace std;  typedef long long int ll;  // Utility function to find // GCD of 'a' and 'b' int gcd(int a, int b) {     if (b == 0)         return a;     return gcd(b, a % b); }  // Returns LCM of array elements ll findlcm(int arr[], int n) {     // Initialize result     ll ans = arr[0];      // ans contains LCM of arr[0], ..arr[i]     // after i'th iteration,     for (int i = 1; i < n; i++)         ans = (((arr[i] * ans)) /                 (gcd(arr[i], ans)));      return ans; }  // Driver Code int main() {     int arr[] = { 2, 7, 3, 9, 4 };     int n = sizeof(arr) / sizeof(arr[0]);     printf("%lld", findlcm(arr, n));     return 0; } 
Java
// Java Program to find LCM of n elements import java.io.*;  public class GFG {          public static long lcm_of_array_elements(int[] element_array)     {         long lcm_of_array_elements = 1;         int divisor = 2;                  while (true) {             int counter = 0;             boolean divisible = false;                          for (int i = 0; i < element_array.length; i++) {                  // lcm_of_array_elements (n1, n2, ... 0) = 0.                 // For negative number we convert into                 // positive and calculate lcm_of_array_elements.                  if (element_array[i] == 0) {                     return 0;                 }                 else if (element_array[i] < 0) {                     element_array[i] = element_array[i] * (-1);                 }                 if (element_array[i] == 1) {                     counter++;                 }                  // Divide element_array by devisor if complete                 // division i.e. without remainder then replace                 // number with quotient; used for find next factor                 if (element_array[i] % divisor == 0) {                     divisible = true;                     element_array[i] = element_array[i] / divisor;                 }             }              // If divisor able to completely divide any number             // from array multiply with lcm_of_array_elements             // and store into lcm_of_array_elements and continue             // to same divisor for next factor finding.             // else increment divisor             if (divisible) {                 lcm_of_array_elements = lcm_of_array_elements * divisor;             }             else {                 divisor++;             }              // Check if all element_array is 1 indicate              // we found all factors and terminate while loop.             if (counter == element_array.length) {                 return lcm_of_array_elements;             }         }     }          // Driver Code     public static void main(String[] args)     {         int[] element_array = { 2, 7, 3, 9, 4 };         System.out.println(lcm_of_array_elements(element_array));     } }  // Code contributed by Mohit Gupta_OMG 
Python
# Python Program to find LCM of n elements  def find_lcm(num1, num2):     if(num1>num2):         num = num1         den = num2     else:         num = num2         den = num1     rem = num % den     while(rem != 0):         num = den         den = rem         rem = num % den     gcd = den     lcm = int(int(num1 * num2)/int(gcd))     return lcm      l = [2, 7, 3, 9, 4]  num1 = l[0] num2 = l[1] lcm = find_lcm(num1, num2)  for i in range(2, len(l)):     lcm = find_lcm(lcm, l[i])      print(lcm)  # Code contributed by Mohit Gupta_OMG 
C#
// C# Program to find LCM of n elements using System;  public class GFG {          public static long lcm_of_array_elements(int[] element_array)     {         long lcm_of_array_elements = 1;         int divisor = 2;                  while (true) {                          int counter = 0;             bool divisible = false;             for (int i = 0; i < element_array.Length; i++) {                  // lcm_of_array_elements (n1, n2, ... 0) = 0.                 // For negative number we convert into                 // positive and calculate lcm_of_array_elements.                 if (element_array[i] == 0) {                     return 0;                 }                 else if (element_array[i] < 0) {                     element_array[i] = element_array[i] * (-1);                 }                 if (element_array[i] == 1) {                     counter++;                 }                  // Divide element_array by devisor if complete                 // division i.e. without remainder then replace                 // number with quotient; used for find next factor                 if (element_array[i] % divisor == 0) {                     divisible = true;                     element_array[i] = element_array[i] / divisor;                 }             }              // If divisor able to completely divide any number             // from array multiply with lcm_of_array_elements             // and store into lcm_of_array_elements and continue             // to same divisor for next factor finding.             // else increment divisor             if (divisible) {                 lcm_of_array_elements = lcm_of_array_elements * divisor;             }             else {                 divisor++;             }              // Check if all element_array is 1 indicate              // we found all factors and terminate while loop.             if (counter == element_array.Length) {                 return lcm_of_array_elements;             }         }     }          // Driver Code     public static void Main()     {         int[] element_array = { 2, 7, 3, 9, 4 };         Console.Write(lcm_of_array_elements(element_array));     } }  // This Code is contributed by nitin mittal 
JavaScript
<script>  // Javascript program to find LCM of n elements   // Utility function to find  // GCD of 'a' and 'b'  function gcd(a, b)  {      if (b == 0)          return a;      return gcd(b, a % b);  }   // Returns LCM of array elements  function findlcm(arr, n)  {      // Initialize result      let ans = arr[0];       // ans contains LCM of arr[0], ..arr[i]      // after i'th iteration,      for (let i = 1; i < n; i++)          ans = (((arr[i] * ans)) /                  (gcd(arr[i], ans)));       return ans;  }   // Driver Code        let arr = [ 2, 7, 3, 9, 4 ];      let n = arr.length;      document.write(findlcm(arr, n));   // This code is contributed by Mayank Tyagi  </script> 
PHP
<?php // PHP program to find LCM of n elements  // Utility function to find // GCD of 'a' and 'b' function gcd($a, $b) {     if ($b == 0)         return $a;     return gcd($b, $a % $b); }  // Returns LCM of array elements function findlcm($arr, $n) {          // Initialize result     $ans = $arr[0];      // ans contains LCM of      // arr[0], ..arr[i]     // after i'th iteration,     for ($i = 1; $i < $n; $i++)         $ans = ((($arr[$i] * $ans)) /                 (gcd($arr[$i], $ans)));      return $ans; }  // Driver Code $arr = array(2, 7, 3, 9, 4 ); $n = sizeof($arr); echo findlcm($arr, $n);  // This code is contributed by ChitraNayal ?> 

Output
252

Time Complexity: O(n * log(min(a, b))), where n represents the size of the given array.
Auxiliary Space: O(n*log(min(a, b))) due to recursive stack space.

[Alternate Implementation] Recursive LCM Calculation – O(n * log(max(a, b)) Time and O(n) Space

Below is the implementation of the above algorithm Recursively :

C++
#include <bits/stdc++.h> using namespace std;  //recursive implementation int LcmOfArray(vector<int> arr, int idx){     // lcm(a,b) = (a*b/gcd(a,b))     if (idx == arr.size()-1){         return arr[idx];     }     int a = arr[idx];     int b = LcmOfArray(arr, idx+1);     return (a*b/__gcd(a,b)); // __gcd(a,b) is inbuilt library function }   int main() {          vector<int> arr = {1,2,8,3};     cout << LcmOfArray(arr, 0) << "\n";       arr = {2,7,3,9,4};       cout << LcmOfArray(arr,0) << "\n";     return 0; }  
Java
import java.util.*; import java.io.*;  class GFG {    // Recursive function to return gcd of a and b     static int __gcd(int a, int b)     {       return b == 0? a:__gcd(b, a % b);        }    // recursive implementation   static int LcmOfArray(int[] arr, int idx)   {      // lcm(a,b) = (a*b/gcd(a,b))     if (idx == arr.length - 1){       return arr[idx];     }     int a = arr[idx];     int b = LcmOfArray(arr, idx+1);     return (a*b/__gcd(a,b)); //    }     public static void main(String[] args)   {      int[] arr = {1,2,8,3};     System.out.print(LcmOfArray(arr, 0)+ "\n");     int[]  arr1 = {2,7,3,9,4};     System.out.print(LcmOfArray(arr1,0)+ "\n");   } }   // This code is contributed by gauravrajput1  
Python
def __gcd(a, b):     if (a == 0):         return b     return __gcd(b % a, a)  # recursive implementation def LcmOfArray(arr, idx):        # lcm(a,b) = (a*b/gcd(a,b))     if (idx == len(arr)-1):         return arr[idx]     a = arr[idx]     b = LcmOfArray(arr, idx+1)     return int(a*b/__gcd(a,b)) # __gcd(a,b) is inbuilt library function  arr = [1,2,8,3] print(LcmOfArray(arr, 0)) arr = [2,7,3,9,4] print(LcmOfArray(arr,0))  # This code is contributed by divyeshrabadiya07. 
C#
using System; class GFG {          // Function to return     // gcd of a and b     static int __gcd(int a, int b)     {         if (a == 0)             return b;         return __gcd(b % a, a);     }       //recursive implementation     static int LcmOfArray(int[] arr, int idx){         // lcm(a,b) = (a*b/gcd(a,b))         if (idx == arr.Length-1){             return arr[idx];         }         int a = arr[idx];         int b = LcmOfArray(arr, idx+1);         return (a*b/__gcd(a,b)); // __gcd(a,b) is inbuilt library function     }        static void Main() {     int[] arr = {1,2,8,3};     Console.WriteLine(LcmOfArray(arr, 0));     int[] arr1 = {2,7,3,9,4};     Console.WriteLine(LcmOfArray(arr1,0));   } } 
JavaScript
<script>      // Function to return     // gcd of a and b     function __gcd(a, b)     {         if (a == 0)             return b;         return __gcd(b % a, a);     }      //recursive implementation     function LcmOfArray(arr, idx){         // lcm(a,b) = (a*b/gcd(a,b))         if (idx == arr.length-1){             return arr[idx];         }         let a = arr[idx];         let b = LcmOfArray(arr, idx+1);         return (a*b/__gcd(a,b)); // __gcd(a,b) is inbuilt library function     }          let arr = [1,2,8,3];     document.write(LcmOfArray(arr, 0) + "</br>");     arr = [2,7,3,9,4];     document.write(LcmOfArray(arr,0));  // This code is contributed by decode2207. </script> 

Output
24 252

Time Complexity: O(n * log(max(a, b)), where n represents the size of the given array.
Auxiliary Space: O(n) due to recursive stack space. 

[Efficient Approach] Using Euclidean Algorithm for GCD – O(n log n) Time and O(1) Space

The function starts by initializing the lcm variable to the first element in the array. It then iterates through the rest of the array, and for each element, it calculates the GCD of the current lcm and the element using the Euclidean algorithm. The calculated GCD is stored in the gcd variable.

Once the GCD is calculated, the LCM is updated by multiplying the current lcm with the element and dividing by the GCD. This is done using the formula LCM(a,b) = (a * b) / GCD(a,b).

C++
#include <iostream> #include <vector> using namespace std;  int gcd(int num1, int num2) {     if (num2 == 0)         return num1;     return gcd(num2, num1 % num2); }  int lcm_of_array(vector<int> arr) {     int lcm = arr[0];     for (int i = 1; i < arr.size(); i++) {         int num1 = lcm;         int num2 = arr[i];         int gcd_val = gcd(num1, num2);         lcm = (lcm * arr[i]) / gcd_val;     }     return lcm; }  int main() {     vector<int> arr1 = { 1, 2, 8, 3 };     vector<int> arr2 = { 2, 7, 3, 9, 4 };     cout << lcm_of_array(arr1) << endl; // Output: 24     cout << lcm_of_array(arr2) << endl; // Output: 252     return 0; } 
Java
import java.util.*;  public class Main {      public static int gcd(int num1, int num2)     {         if (num2 == 0)             return num1;         return gcd(num2, num1 % num2);     }      public static int lcm_of_array(ArrayList<Integer> arr)     {         int lcm = arr.get(0);         for (int i = 1; i < arr.size(); i++) {             int num1 = lcm;             int num2 = arr.get(i);             int gcd_val = gcd(num1, num2);             lcm = (lcm * arr.get(i)) / gcd_val;         }         return lcm;     }      public static void main(String[] args)     {         ArrayList<Integer> arr1             = new ArrayList<>(Arrays.asList(1, 2, 8, 3));         ArrayList<Integer> arr2             = new ArrayList<>(Arrays.asList(2, 7, 3, 9, 4));         System.out.println(             lcm_of_array(arr1)); // Output: 24         System.out.println(             lcm_of_array(arr2)); // Output: 252     } } 
Python
def lcm_of_array(arr):     lcm = arr[0]     for i in range(1, len(arr)):         num1 = lcm         num2 = arr[i]         gcd = 1         # Finding GCD using Euclidean algorithm         while num2 != 0:             temp = num2             num2 = num1 % num2             num1 = temp         gcd = num1         lcm = (lcm * arr[i]) // gcd     return lcm   # Example usage arr1 = [1, 2, 8, 3] arr2 = [2, 7, 3, 9, 4] print(lcm_of_array(arr1))  # Output: 24 print(lcm_of_array(arr2))  # Output: 252 
C#
using System; using System.Collections.Generic;  class Program {     static int Gcd(int num1, int num2)     {         if (num2 == 0)             return num1;         return Gcd(num2, num1 % num2);     }      static int LcmOfArray(List<int> arr)     {         int lcm = arr[0];         for (int i = 1; i < arr.Count; i++) {             int num1 = lcm;             int num2 = arr[i];             int gcdVal = Gcd(num1, num2);             lcm = (lcm * arr[i]) / gcdVal;         }         return lcm;     }      static void Main()     {         List<int> arr1 = new List<int>{ 1, 2, 8, 3 };         List<int> arr2 = new List<int>{ 2, 7, 3, 9, 4 };         Console.WriteLine(LcmOfArray(arr1)); // Output: 24         Console.WriteLine(LcmOfArray(arr2)); // Output: 252     } } 
JavaScript
function gcd(num1, num2) {     if (num2 == 0)         return num1;     return gcd(num2, num1 % num2); }  function lcm_of_array(arr) {     let lcm = arr[0];     for (let i = 1; i < arr.length; i++) {         let num1 = lcm;         let num2 = arr[i];         let gcd_val = gcd(num1, num2);         lcm = (lcm * arr[i]) / gcd_val;     }     return lcm; }  let arr1 = [1, 2, 8, 3]; let arr2 = [2, 7, 3, 9, 4]; console.log(lcm_of_array(arr1)); // Output: 24 console.log(lcm_of_array(arr2)); // Output: 252 

Output
24 252


The time complexity of the above code is O(n log n), where n is the length of the input array. This is because for each element of the array, we need to find the GCD, which has a time complexity of O(log n) using the Euclidean algorithm. Since we are iterating over n elements of the array, the overall time complexity becomes O(n log n).

The auxiliary space used by this algorithm is O(1), as only a constant number of variables are used throughout the algorithm, regardless of the size of the input array.

[Expected Approach] Using Library Methods

This code uses the reduce function from the functools library and the gcd function from the math library to find the LCM of a list of numbers. The reduce function applies the lambda function to the elements of the list, cumulatively reducing the list to a single value (the LCM in this case). The lambda function calculates the LCM of two numbers using the same approach as the previous implementation. The final LCM is returned as the result.

C++
#include <iostream> #include <vector> #include <numeric> // for std::accumulate  int gcd(int a, int b) {     if (b == 0)         return a;     return gcd(b, a % b); }  int lcm(std::vector<int> numbers) {     return std::accumulate(numbers.begin(), numbers.end(), 1,         [](int x, int y) { return (x * y) / gcd(x, y); }); }  int main() {     std::vector<int> numbers = {2, 3, 4, 5};     int LCM = lcm(numbers);     std::cout << "LCM of " << numbers.size() << " numbers is " << LCM << std::endl;     return 0; } 
Java
// Java code to find LCM of given numbers using reduce() // function import java.util.*; import java.util.function.*; import java.util.stream.*;  class Main {     static int lcm(List<Integer> numbers)     {         return numbers.stream().reduce(             1, (x, y) -> (x * y) / gcd(x, y));     }      static int gcd(int a, int b)     {         if (b == 0)             return a;         return gcd(b, a % b);     }      public static void main(String[] args)     {         List<Integer> numbers = Arrays.asList(2, 3, 4, 5);         int LCM = lcm(numbers);         System.out.println("LCM of " + numbers + " is "                            + LCM);     } } 
Python
from functools import reduce import math  def lcm(numbers):     return reduce(lambda x, y: x * y // math.gcd(x, y), numbers, 1)  numbers = [2, 3, 4, 5] print("LCM of", numbers, "is", lcm(numbers)) 
C#
using System; using System.Linq;  class Program {     static int Lcm(int[] numbers)     {         return numbers.Aggregate((x, y) => x * y / Gcd(x, y));     }      static int Gcd(int a, int b)     {         if (b == 0)             return a;         return Gcd(b, a % b);     }      static void Main()     {         int[] numbers = { 2, 3, 4, 5 };         int lcm = Lcm(numbers);         Console.WriteLine("LCM of {0} is {1}", string.Join(", ", numbers), lcm);     } } 
JavaScript
function lcm(numbers) {   function gcd(a, b) {     // If the second argument is 0, return the first argument (base case)     if (b === 0) {       return a;     }     // Otherwise, recursively call gcd with arguments b and the remainder of a divided by b     return gcd(b, a % b);   }   // Reduce the array of numbers by multiplying each number together and dividing by their gcd   // This finds the Least Common Multiple (LCM) of the numbers in the array   return numbers.reduce((a, b) => a * b / gcd(a, b)); }  // array  let numbers = [2, 3, 4, 5];  // Call the lcm function  let lcmValue = lcm(numbers);  // Print the Output  console.log(`LCM of ${numbers.join(', ')} is ${lcmValue}`); 

Output
LCM of 4 numbers is 60

The time complexity of the program is O(n log n)

The auxiliary space used by the program is O(1) 

Related Article : 

  • Finding LCM of more than two (or array) numbers without using GCD
  • Inbuilt function for calculating LCM in C++


Next Article
Find the other number when LCM and HCF given

M

Madhur Modi
Improve
Article Tags :
  • DSA
  • Mathematical
  • GCD-LCM
Practice Tags :
  • Mathematical

Similar Reads

  • GCD (Greatest Common Divisor) Practice Problems for Competitive Programming
    GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest positive integer that divides both of the numbers. Fastest Way to Compute GCDThe fastest way to find the Greatest Common Divisor (GCD) of two numbers is by using the Euclidean algorithm. The Euclidean algorith
    4 min read
  • Program to Find GCD or HCF of Two Numbers
    Given two numbers a and b, the task is to find the GCD of the two numbers. Note: The GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them. Examples: Input: a = 20, b = 28Output: 4Explanation: The factors of 20 are 1, 2, 4, 5, 10
    15+ min read
  • Check if two numbers are co-prime or not
    Two numbers A and B are said to be Co-Prime or mutually prime if the Greatest Common Divisor of them is 1. You have been given two numbers A and B, find if they are Co-prime or not.Examples : Input : 2 3Output : Co-PrimeInput : 4 8Output : Not Co-Prime The idea is simple, we find GCD of two numbers
    5 min read
  • GCD of more than two (or array) numbers
    Given an array arr[] of non-negative numbers, the task is to find GCD of all the array elements. In a previous post we find GCD of two number. Examples: Input: arr[] = [1, 2, 3]Output: 1Input: arr[] = [2, 4, 6, 8]Output: 2 Using Recursive GCDThe GCD of three or more numbers equals the product of the
    11 min read
  • Program to find LCM of two numbers
    LCM of two numbers is the smallest number which can be divided by both numbers. Input : a = 12, b = 18Output : 3636 is the smallest number divisible by both 12 and 18 Input : a = 5, b = 11Output : 5555 is the smallest number divisible by both 5 and 11 [Naive Approach] Using Conditional Loop This app
    8 min read
  • LCM of given array elements
    In this article, we will learn how to find the LCM of given array elements. Given an array of n numbers, find the LCM of it. Example: Input : {1, 2, 8, 3}Output : 24LCM of 1, 2, 8 and 3 is 24Input : {2, 7, 3, 9, 4}Output : 252 Table of Content [Naive Approach] Iterative LCM Calculation - O(n * log(m
    15 min read
  • Find the other number when LCM and HCF given
    Given a number A and L.C.M and H.C.F. The task is to determine the other number B. Examples: Input: A = 10, Lcm = 10, Hcf = 50. Output: B = 50 Input: A = 5, Lcm = 25, Hcf = 4. Output: B = 20 Formula: A * B = LCM * HCF B = (LCM * HCF)/AExample : A = 15, B = 12 HCF = 3, LCM = 60 We can see that 3 * 60
    4 min read
  • Minimum insertions to make a Co-prime array
    Given an array of N elements, find the minimum number of insertions to convert the given array into a co-prime array. Print the resultant array also.Co-prime Array : An array in which every pair of adjacent elements are co-primes. i.e, [Tex]gcd(a, b) = 1 [/Tex]. Examples : Input : A[] = {2, 7, 28}Ou
    7 min read
  • Find the minimum possible health of the winning player
    Given an array health[] where health[i] is the health of the ith player in a game, any player can attack any other player in the game. The health of the player being attacked will be reduced by the amount of health the attacking player has. The task is to find the minimum possible health of the winn
    4 min read
  • Minimum squares to evenly cut a rectangle
    Given a rectangular sheet of length l and width w. we need to divide this sheet into square sheets such that the number of square sheets should be as minimum as possible.Examples: Input :l= 4 w=6 Output :6 We can form squares with side of 1 unit, But the number of squares will be 24, this is not min
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences