Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Heap
  • Practice Heap
  • MCQs on Heap
  • Heap Tutorial
  • Binary Heap
  • Building Heap
  • Binomial Heap
  • Fibonacci Heap
  • Heap Sort
  • Heap vs Tree
  • Leftist Heap
  • K-ary Heap
  • Advantages & Disadvantages
Open In App
Next Article:
Height of a complete binary tree (or Heap) with N nodes
Next article icon

K’th Smallest Element in Unsorted Array

Last Updated : 14 Aug, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given an array arr[] of N distinct elements and a number K, where K is smaller than the size of the array. Find the K’th smallest element in the given array.

Examples:

Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3 
Output: 7

Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 4 
Output: 10 

Table of Content

  • [Naive Approach] Using Sorting – O(n log(n)) time and O(1) auxiliary space:
  • [Expected Approach] Using Priority Queue(Max-Heap) – O(N * log(K)) time and O(K) auxiliary space:
  • [QuickSelect] Works best in Practice:
  • [Other Approach] Using Counting Sort (Not efficient for large range of elements)

[Naive Approach] Using Sorting – O(n log(n)) time and O(1) auxiliary space:

The very basic approach is to sort the given array and return the element at the index K – 1.

Below is the Implementation of the above approach:

C++
// C++ program to find K'th smallest element #include <bits/stdc++.h> using namespace std;  // Function to return K'th smallest element in a given array int kthSmallest(int arr[], int N, int K) {     // Sort the given array     sort(arr, arr + N);      // Return k'th element in the sorted array     return arr[K - 1]; }  // Driver's code int main() {     int arr[] = { 12, 3, 5, 7, 19 };     int N = sizeof(arr) / sizeof(arr[0]), K = 2;      // Function call     cout << "K'th smallest element is "          << kthSmallest(arr, N, K);     return 0; } 
C
// C program to find K'th smallest element #include <stdio.h> #include <stdlib.h>  // Compare function for qsort int cmpfunc(const void* a, const void* b) {     return (*(int*)a - *(int*)b); }  // Function to return K'th smallest // element in a given array int kthSmallest(int arr[], int N, int K) {     // Sort the given array     qsort(arr, N, sizeof(int), cmpfunc);      // Return k'th element in the sorted array     return arr[K - 1]; }  // Driver's code int main() {     int arr[] = { 12, 3, 5, 7, 19 };     int N = sizeof(arr) / sizeof(arr[0]), K = 2;      // Function call     printf("K'th smallest element is %d",            kthSmallest(arr, N, K));     return 0; } 
Java
// Java code for Kth smallest element // in an array import java.util.Arrays; import java.util.Collections;  class GFG {     // Function to return K'th smallest     // element in a given array     public static int kthSmallest(Integer[] arr, int K)     {         // Sort the given array         Arrays.sort(arr);          // Return K'th element in         // the sorted array         return arr[K - 1];     }      // driver's code     public static void main(String[] args)     {         Integer arr[] = new Integer[] { 12, 3, 5, 7, 19 };         int K = 2;          // Function call         System.out.print("K'th smallest element is "                          + kthSmallest(arr, K));     } } 
Python
# Python3 program to find K'th smallest # element  # Function to return K'th smallest # element in a given array   def kthSmallest(arr, N, K):      # Sort the given array     arr.sort()      # Return k'th element in the     # sorted array     return arr[K-1]   # Driver code if __name__ == '__main__':     arr = [12, 3, 5, 7, 19]     N = len(arr)     K = 2      # Function call     print("K'th smallest element is",           kthSmallest(arr, N, K)) 
C#
// C# code for Kth smallest element // in an array using System;  class GFG {      // Function to return K'th smallest     // element in a given array     public static int kthSmallest(int[] arr, int K)     {          // Sort the given array         Array.Sort(arr);          // Return k'th element in         // the sorted array         return arr[K - 1];     }      // driver's program     public static void Main()     {         int[] arr = new int[] { 12, 3, 5, 7, 19 };         int K = 2;          // Function call         Console.Write("K'th smallest element"                       + " is " + kthSmallest(arr, K));     } } 
JavaScript
// Simple Javascript program to find K'th smallest element  // Function to return K'th smallest element in a given array function kthSmallest(arr, N, K) {     // Sort the given array     arr.sort((a,b) => a-b);      // Return k'th element in the sorted array     return arr[K - 1]; }  // Driver program to test above methods     let arr = [12, 3, 5, 7, 19];     let N = arr.length, K = 2;     console.log("K'th smallest element is " + kthSmallest(arr, N, K)); 
PHP
<?php // Simple PHP program to find  // K'th smallest element  // Function to return K'th smallest // element in a given array function kthSmallest($arr, $N, $K) {          // Sort the given array     sort($arr);      // Return k'th element      // in the sorted array     return $arr[$K - 1]; }      // Driver's Code     $arr = array(12, 3, 5, 7, 19);     $N =count($arr);     $K = 2;          // Function call     echo "K'th smallest element is ", kthSmallest($arr, $N, $K);   ?> 

Output
K'th smallest element is 5

Time Complexity: O(N log N)
Auxiliary Space: O(1) 

[Expected Approach] Using Priority Queue(Max-Heap) – O(N * log(K)) time and O(K) auxiliary space:

The intuition behind this approach is to maintain a max heap (priority queue) of size K while iterating through the array. Doing this ensures that the max heap always contains the K smallest elements encountered so far. If the size of the max heap exceeds K, remove the largest element this step ensures that the heap maintains the K smallest elements encountered so far. In the end, the max heap’s top element will be the Kth smallest element.

Code Implementation:

C++
#include <bits/stdc++.h> using namespace std;  // Function to find the kth smallest array element int kthSmallest(int arr[], int N, int K) {     // Create a max heap (priority queue)     priority_queue<int> pq;      // Iterate through the array elements     for (int i = 0; i < N; i++) {         // Push the current element onto the max heap         pq.push(arr[i]);          // If the size of the max heap exceeds K, remove the largest element         if (pq.size() > K)             pq.pop();     }      // Return the Kth smallest element (top of the max heap)     return pq.top(); }  // Driver's code: int main() {     int N = 10;     int arr[N] = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };     int K = 4;      // Function call     cout << "Kth Smallest Element is: "          << kthSmallest(arr, N, K); } 
Java
import java.util.PriorityQueue;  public class KthSmallestElement {      // Function to find the kth smallest array element     public static int kthSmallest(int[] arr, int N, int K) {         // Create a max heap (priority queue)         PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);          // Iterate through the array elements         for (int i = 0; i < N; i++) {             // Push the current element onto the max heap             pq.offer(arr[i]);              // If the size of the max heap exceeds K, remove the largest element             if (pq.size() > K)                 pq.poll();         }          // Return the Kth smallest element (top of the max heap)         return pq.peek();     }      // Driver's code:     public static void main(String[] args) {         int N = 10;         int[] arr = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };         int K = 4;          // Function call         System.out.println("Kth Smallest Element is: " + kthSmallest(arr, N, K));     } } 
Python
import heapq  # Function to find the kth smallest array element def kthSmallest(arr, K):     # Create a max heap (priority queue)     max_heap = []      # Iterate through the array elements     for num in arr:         # Push the negative of the current element onto the max heap         heapq.heappush(max_heap, -num)          # If the size of the max heap exceeds K, remove the largest element         if len(max_heap) > K:             heapq.heappop(max_heap)      # Return the Kth smallest element (top of the max heap, negated)     return -max_heap[0]  # Driver's code: if __name__ == "__main__":     arr = [10, 5, 4, 3, 48, 6, 2, 33, 53, 10]     K = 4      # Function call     print("Kth Smallest Element is:", kthSmallest(arr, K)) 
C#
using System; using System.Collections.Generic;  public class KthSmallestElement {     // Function to find the kth smallest array element     public static int KthSmallest(int[] arr, int K)     {         // Create a max heap (priority queue) using a SortedSet         var maxHeap = new SortedSet<int>(Comparer<int>.Create((a, b) => b.CompareTo(a)));          // Iterate through the array elements         foreach (var num in arr)         {             // Add the current element to the max heap             maxHeap.Add(-num);              // If the size of the max heap exceeds K, remove the largest element             if (maxHeap.Count > K)                 maxHeap.Remove(maxHeap.Max);         }          // Return the Kth smallest element (top of the max heap)         return -maxHeap.Max;     }      // Driver's code:     public static void Main()     {         int[] arr = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };         int K = 4;          // Function call         Console.WriteLine("Kth Smallest Element is: " + KthSmallest(arr, K));     } } 
JavaScript
// Function to find the kth smallest array element function kthSmallest(arr, K) {     // Create a max heap (priority queue)     let pq = new MaxHeap();      // Iterate through the array elements     for (let i = 0; i < arr.length; i++) {         // Push the current element onto the max heap         pq.push(arr[i]);          // If the size of the max heap exceeds K, remove the largest element         if (pq.size() > K)             pq.pop();     }      // Return the Kth smallest element (top of the max heap)     return pq.top(); }  // MaxHeap class definition class MaxHeap {     constructor() {         this.heap = [];     }      push(val) {         this.heap.push(val);         this.heapifyUp(this.heap.length - 1);     }      pop() {         if (this.heap.length === 0) {             return null;         }         if (this.heap.length === 1) {             return this.heap.pop();         }          const root = this.heap[0];         this.heap[0] = this.heap.pop();         this.heapifyDown(0);          return root;     }      top() {         if (this.heap.length === 0) {             return null;         }         return this.heap[0];     }      size() {         return this.heap.length;     }      heapifyUp(index) {         while (index > 0) {             const parentIndex = Math.floor((index - 1) / 2);             if (this.heap[parentIndex] >= this.heap[index]) {                 break;             }             this.swap(parentIndex, index);             index = parentIndex;         }     }      heapifyDown(index) {         const leftChildIndex = 2 * index + 1;         const rightChildIndex = 2 * index + 2;         let largestIndex = index;          if (             leftChildIndex < this.heap.length &&             this.heap[leftChildIndex] > this.heap[largestIndex]         ) {             largestIndex = leftChildIndex;         }          if (             rightChildIndex < this.heap.length &&             this.heap[rightChildIndex] > this.heap[largestIndex]         ) {             largestIndex = rightChildIndex;         }          if (index !== largestIndex) {             this.swap(index, largestIndex);             this.heapifyDown(largestIndex);         }     }      swap(i, j) {         [this.heap[i], this.heap[j]] = [this.heap[j], this.heap[i]];     } }  // Driver's code: const arr = [10, 5, 4, 3, 48, 6, 2, 33, 53, 10]; const K = 4;  // Function call console.log("Kth Smallest Element is: " + kthSmallest(arr, K)); 

Output
Kth Smallest Element is: 5

Time Complexity: O(N * log(K)), The approach efficiently maintains a container of the K smallest elements while iterating through the array, ensuring a time complexity of O(N * log(K)), where N is the number of elements in the array.
Auxiliary Space: O(K)

[QuickSelect] Works best in Practice:

The algorithm is similar to QuickSort. The difference is, instead of recurring for both sides (after finding pivot), it recurs only for the part that contains the k-th smallest element. The logic is simple, if index of the partitioned element is more than k, then we recur for the left part. If index is the same as k, we have found the k-th smallest element and we return. If index is less than k, then we recur for the right part. This reduces the expected complexity from O(n log n) to O(n), with a worst-case of O(n^2).

function quickSelect(list, left, right, k)     if left = right       return list[left]     Select a pivotIndex between left and right     pivotIndex := partition(list, left, right,                                    pivotIndex)    if k = pivotIndex       return list[k]    else if k < pivotIndex       right := pivotIndex - 1    else       left := pivotIndex + 1 

Please refer Quickselect for implementation,

Time Complexity : O(n^2) in the worst case, but on average works in O(n Log n) time and performs better than priority queue based algorithm.
Auxiliary Space : O(n) for recursion call stack in worst case. On average : O(Log n)

[Other Approach] Using Counting Sort (Not efficient for large range of elements)

Counting sort is a linear time sorting algorithm that counts the occurrences of each element in an array and uses this information to determine the sorted order. The idea behind using counting sort to find the K’th smallest element is to use the counting phase, which essentially calculates the cumulative frequencies of elements. By tracking these cumulative frequencies, we can efficiently determine the K’th smallest element.

Note: This approach is particularly useful when the range of elements is small, this is because we are declaring a array of size maximum element. If the range of elements is very large, the counting sort approach may not be the most efficient choice.

Code Implementation:

C++
#include <iostream> using namespace std;  // This function returns the kth smallest element in an array int kthSmallest(int arr[], int n, int k) {     // First, find the maximum element in the array     int max_element = arr[0];     for (int i = 1; i < n; i++) {         if (arr[i] > max_element) {             max_element = arr[i];         }     }      // Create an array to store the frequency of each     // element in the input array     int freq[max_element + 1] = {0};     for (int i = 0; i < n; i++) {         freq[arr[i]]++;     }      // Keep track of the cumulative frequency of elements     // in the input array     int count = 0;     for (int i = 0; i <= max_element; i++) {         if (freq[i] != 0) {             count += freq[i];             if (count >= k) {                 // If we have seen k or more elements,                // return the current element                 return i;             }         }     }     return -1; }  // Driver Code int main() {     int arr[] = {12,3,5,7,19};     int n = sizeof(arr) / sizeof(arr[0]);     int k = 2;     cout << "The " << k << "th smallest element is " << kthSmallest(arr, n, k) << endl;      return 0; } 
Java
import java.util.Arrays;  public class GFG {      // This function returns the kth smallest element in an     // array     static int kthSmallest(int[] arr, int n, int k)     {         // First, find the maximum element in the array         int max_element = arr[0];         for (int i = 1; i < n; i++) {             if (arr[i] > max_element) {                 max_element = arr[i];             }         }          // Create an array to store the frequency of each         // element in the input array         int[] freq = new int[max_element + 1];         Arrays.fill(freq, 0);         for (int i = 0; i < n; i++) {             freq[arr[i]]++;         }          // Keep track of the cumulative frequency of         // elements in the input array         int count = 0;         for (int i = 0; i <= max_element; i++) {             if (freq[i] != 0) {                 count += freq[i];                 if (count >= k) {                     // If we have seen k or more elements,                     // return the current element                     return i;                 }             }         }         return -1;     }      // Driver Code     public static void main(String[] args)     {         int[] arr = { 12, 3, 5, 7, 19 };         int n = arr.length;         int k = 2;         System.out.println("The " + k                            + "th smallest element is "                            + kthSmallest(arr, n, k));     } } 
Python
  # Python3 code for kth smallest element in an array  # function returns the kth smallest element in an array def kth_smallest(arr, k):     # First, find the maximum element in the array     max_element = max(arr)      # Create a dictionary to store the frequency of each      # element in the input array     freq = {}     for num in arr:         freq[num] = freq.get(num, 0) + 1      # Keep track of the cumulative frequency of elements      # in the input array     count = 0     for i in range(max_element + 1):         if i in freq:             count += freq[i]             if count >= k:                 # If we have seen k or more elements,                  # return the current element                 return i      return -1  # Driver Code arr = [12, 3, 5, 7, 19] k = 2 print("The", k,"th smallest element is", kth_smallest(arr, k)) 
C#
using System;  public class GFG {     // This function returns the kth smallest element in an array     static int KthSmallest(int[] arr, int n, int k) {         // First, find the maximum element in the array         int maxElement = arr[0];         for (int i = 1; i < n; i++) {             if (arr[i] > maxElement) {                 maxElement = arr[i];             }         }          // Create an array to store the frequency of each          // element in the input array         int[] freq = new int[maxElement + 1];         for (int i = 0; i < n; i++) {             freq[arr[i]]++;         }          // Keep track of the cumulative frequency of elements          // in the input array         int count = 0;         for (int i = 0; i <= maxElement; i++) {             if (freq[i] != 0) {                 count += freq[i];                 if (count >= k) {                     // If we have seen k or more elements,                      // return the current element                     return i;                 }             }         }         return -1;     }      // Driver Code     static void Main(string[] args) {         int[] arr = { 12, 3, 5, 7, 19 };         int n = arr.Length;         int k = 2;         Console.WriteLine("The " + k + "th smallest element is " + KthSmallest(arr, n, k));     } } 
JavaScript
// Function to find the kth smallest element in an array function kthSmallest(arr, k) {     // First, find the maximum element in the array     let maxElement = arr[0];     for (let i = 1; i < arr.length; i++) {         if (arr[i] > maxElement) {             maxElement = arr[i];         }     }      // Create an array to store the frequency of each element in the input array     let freq = new Array(maxElement + 1).fill(0);     for (let i = 0; i < arr.length; i++) {         freq[arr[i]]++;     }      // Keep track of the cumulative frequency of elements in the input array     let count = 0;     for (let i = 0; i <= maxElement; i++) {         if (freq[i] !== 0) {             count += freq[i];             if (count >= k) {                 // If we have seen k or more elements, return the current element                 return i;             }         }     }     return -1; // kth smallest element not found }  // Driver code const arr = [12, 3, 5, 7, 19]; const k = 2; console.log(`The ${k}th smallest element is ${kthSmallest(arr, k)}`); 

Output
The 2th smallest element is 5 

Time Complexity: O(N + max_element), where max_element is the maximum element of the array.
Auxiliary Space: O(max_element)

Related Articles:

  • Print k largest elements of an array



Next Article
Height of a complete binary tree (or Heap) with N nodes
author
kartik
Improve
Article Tags :
  • Arrays
  • DSA
  • Heap
  • Searching
  • ABCO
  • Accolite
  • Amazon
  • Cisco
  • Microsoft
  • Order-Statistics
  • Rockstand
  • SAP Labs
  • Snapdeal
  • VMWare
Practice Tags :
  • ABCO
  • Accolite
  • Amazon
  • Cisco
  • Microsoft
  • Rockstand
  • SAP Labs
  • Snapdeal
  • VMWare
  • Arrays
  • Heap
  • Searching

Similar Reads

  • Heap Data Structure
    A Heap is a complete binary tree data structure that satisfies the heap property: for every node, the value of its children is greater than or equal to its own value. Heaps are usually used to implement priority queues, where the smallest (or largest) element is always at the root of the tree. Basic
    2 min read
  • Introduction to Heap - Data Structure and Algorithm Tutorials
    A Heap is a special Tree-based Data Structure that has the following properties. It is a Complete Binary Tree.It either follows max heap or min heap property.Max-Heap: The value of the root node must be the greatest among all its descendant nodes and the same thing must be done for its left and righ
    15+ min read
  • Binary Heap
    A Binary Heap is a complete binary tree that stores data efficiently, allowing quick access to the maximum or minimum element, depending on the type of heap. It can either be a Min Heap or a Max Heap. In a Min Heap, the key at the root must be the smallest among all the keys in the heap, and this pr
    13 min read
  • Advantages and Disadvantages of Heap
    Advantages of Heap Data StructureTime Efficient: Heaps have an average time complexity of O(log n) for inserting and deleting elements, making them efficient for large datasets. We can convert any array to a heap in O(n) time. The most important thing is, we can get the min or max in O(1) timeSpace
    2 min read
  • Time Complexity of building a heap
    Consider the following algorithm for building a Heap of an input array A. A quick look over the above implementation suggests that the running time is [Tex]O(n * lg(n)) [/Tex] since each call to Heapify costs [Tex]O(lg(n)) [/Tex]and Build-Heap makes [Tex]O(n) [/Tex]such calls. This upper bound, thou
    2 min read
  • Applications of Heap Data Structure
    Heap Data Structure is generally taught with Heapsort. Heapsort algorithm has limited uses because Quicksort is better in practice. Nevertheless, the Heap data structure itself is enormously used. Priority Queues: Heaps are commonly used to implement priority queues, where elements with higher prior
    2 min read
  • Comparison between Heap and Tree
    What is Heap? A Heap is a special Tree-based data structure in which the tree is a complete binary tree. Types of Heap Data Structure: Generally, Heaps can be of two types: Max-Heap: In a Max-Heap the key present at the root node must be greatest among the keys present at all of its children. The sa
    3 min read
  • When building a Heap, is the structure of Heap unique?
    What is Heap? A heap is a tree based data structure where the tree is a complete binary tree that maintains the property that either the children of a node are less than itself (max heap) or the children are greater than the node (min heap). Properties of Heap: Structural Property: This property sta
    4 min read
  • Some other type of Heap

    • Binomial Heap
      The main application of Binary Heap is to implement a priority queue. Binomial Heap is an extension of Binary Heap that provides faster union or merge operation with other operations provided by Binary Heap.  A Binomial Heap is a collection of Binomial Trees What is a Binomial Tree?  A Binomial Tree
      15+ min read

    • Fibonacci Heap | Set 1 (Introduction)
      INTRODUCTION:A Fibonacci heap is a data structure used for implementing priority queues. It is a type of heap data structure, but with several improvements over the traditional binary heap and binomial heap data structures.The key advantage of a Fibonacci heap over other heap data structures is its
      5 min read

    • Leftist Tree / Leftist Heap
      INTRODUCTION:A leftist tree, also known as a leftist heap, is a type of binary heap data structure used for implementing priority queues. Like other heap data structures, it is a complete binary tree, meaning that all levels are fully filled except possibly the last level, which is filled from left
      15+ min read

    • K-ary Heap
      Prerequisite - Binary Heap K-ary heaps are a generalization of binary heap(K=2) in which each node have K children instead of 2. Just like binary heap, it follows two properties: Nearly complete binary tree, with all levels having maximum number of nodes except the last, which is filled in left to r
      15 min read

    Easy problems on Heap

    • Check if a given Binary Tree is a Heap
      Given a binary tree, check if it has heap property or not, Binary tree needs to fulfil the following two conditions for being a heap: It should be a complete tree (i.e. Every level of the tree, except possibly the last, is completely filled, and all nodes are as far left as possible.).Every node’s v
      15+ min read

    • How to check if a given array represents a Binary Heap?
      Given an array, how to check if the given array represents a Binary Max-Heap.Examples: Input: arr[] = {90, 15, 10, 7, 12, 2} Output: True The given array represents below tree 90 / \ 15 10 / \ / 7 12 2 The tree follows max-heap property as every node is greater than all of its descendants. Input: ar
      11 min read

    • Iterative HeapSort
      HeapSort is a comparison-based sorting technique where we first build Max Heap and then swap the root element with the last element (size times) and maintains the heap property each time to finally make it sorted. Examples: Input : 10 20 15 17 9 21 Output : 9 10 15 17 20 21 Input: 12 11 13 5 6 7 15
      11 min read

    • Find k largest elements in an array
      Given an array arr[] and an integer k, the task is to find k largest elements in the given array. Elements in the output array should be in decreasing order. Examples: Input: [1, 23, 12, 9, 30, 2, 50], k = 3Output: [50, 30, 23] Input: [11, 5, 12, 9, 44, 17, 2], k = 2Output: [44, 17] Table of Content
      15+ min read

    • K’th Smallest Element in Unsorted Array
      Given an array arr[] of N distinct elements and a number K, where K is smaller than the size of the array. Find the K'th smallest element in the given array. Examples: Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3 Output: 7 Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 4 Output: 10 Table of Content [Naive
      15+ min read

    • Height of a complete binary tree (or Heap) with N nodes
      Consider a Binary Heap of size N. We need to find the height of it. Examples: Input : N = 6 Output : 2 () / \ () () / \ / () () () Input : N = 9 Output : 3 () / \ () () / \ / \ () () () () / \ () ()Recommended PracticeHeight of HeapTry It! Let the size of the heap be N and the height be h. If we tak
      3 min read

    • Heap Sort for decreasing order using min heap
      Given an array of elements, sort the array in decreasing order using min heap. Examples: Input : arr[] = {5, 3, 10, 1}Output : arr[] = {10, 5, 3, 1}Input : arr[] = {1, 50, 100, 25}Output : arr[] = {100, 50, 25, 1} Prerequisite: Heap sort using min heap. Using Min Heap Implementation - O(n Log n) Tim
      11 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences