Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Java Arrays
  • Java Strings
  • Java OOPs
  • Java Collection
  • Java 8 Tutorial
  • Java Multithreading
  • Java Exception Handling
  • Java Programs
  • Java Project
  • Java Collections Interview
  • Java Interview Questions
  • Java MCQs
  • Spring
  • Spring MVC
  • Spring Boot
  • Hibernate
Open In App
Next Article:
JDK in Java
Next article icon

How JVM Works – JVM Architecture

Last Updated : 04 Jan, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

JVM(Java Virtual Machine) runs Java applications as a run-time engine. JVM is the one that calls the main method present in a Java code. JVM is a part of JRE(Java Runtime Environment).

Java applications are called WORA (Write Once Run Anywhere). This means a programmer can develop Java code on one system and expect it to run on any other Java-enabled system without any adjustment. This is all possible because of JVM.

When we compile a .java file, .class files(contains byte-code) with the same class names present in .java file are generated by the Java compiler. This .class file goes into various steps when we run it. These steps together describe the whole JVM. 

Class Loader Sub System

1. Class Loader Subsystem

It is mainly responsible for three activities. 

  • Loading
  • Linking
  • Initialization

Loading:

The Class loader reads the “.class” file, generate the corresponding binary data and save it in the method area. For each “.class” file, JVM stores the following information in the method area.

  • The fully qualified name of the loaded class and its immediate parent class.
  • Whether the “.class” file is related to Class or Interface or Enum.
  • Modifier, Variables and Method information etc.

After loading the “.class” file, JVM creates an object of type Class to represent this file in the heap memory. Please note that this object is of type Class predefined in java.lang package. These Class object can be used by the programmer for getting class level information like the name of the class, parent name, methods and variable information etc. To get this object reference we can use getClass() method of Object class.

Java
// A Java program to demonstrate working // of a Class type object created by JVM // to represent .class file in memory. import java.lang.reflect.Field; import java.lang.reflect.Method;  // Java code to demonstrate use // of Class object created by JVM public class Test {     public static void main(String[] args)     {         Student s1 = new Student();          // Getting hold of Class         // object created by JVM.         Class c1 = s1.getClass();          // Printing type of object using c1.         System.out.println(c1.getName());          // getting all methods in an array         Method m[] = c1.getDeclaredMethods();         for (Method method : m)             System.out.println(method.getName());          // getting all fields in an array         Field f[] = c1.getDeclaredFields();         for (Field field : f)             System.out.println(field.getName());     } }  // A sample class whose information // is fetched above using its Class object. class Student {     private String name;     private int roll_No;      public String getName() { return name; }     public void setName(String name) { this.name = name; }     public int getRoll_no() { return roll_No; }     public void setRoll_no(int roll_no)     {         this.roll_No = roll_no;     } } 

Output
Student getName setName getRoll_no setRoll_no name roll_No 

Note: For every loaded “.class” file, only one object of the class is created.

Student s2 = new Student();
// c2 will point to same object where
// c1 is pointing
Class c2 = s2.getClass();
System.out.println(c1==c2); // true

Linking

Performs verification, preparation, and (optionally) resolution.

  • Verification: It ensures the correctness of the .class file i.e. it checks whether this file is properly formatted and generated by a valid compiler or not. If verification fails, we get run-time exception java.lang.VerifyError. This activity is done by the component ByteCodeVerifier. Once this activity is completed then the class file is ready for compilation.
  • Preparation: JVM allocates memory for class static variables and initializing the memory to default values. 
  • Resolution: It is the process of replacing symbolic references from the type with direct references. It is done by searching into the method area to locate the referenced entity.

Initialization

In this phase, all static variables are assigned with their values defined in the code and static block(if any). This is executed from top to bottom in a class and from parent to child in the class hierarchy. In general, there are three class loaders:  

  • Bootstrap class loader: Every JVM implementation must have a bootstrap class loader, capable of loading trusted classes. It loads core java API classes present in the “JAVA_HOME/lib” directory. This path is popularly known as the bootstrap path. It is implemented in native languages like C, C++.
  • Extension class loader: It is a child of the bootstrap class loader. It loads the classes present in the extensions directories “JAVA_HOME/jre/lib/ext”(Extension path) or any other directory specified by the java.ext.dirs system property. It is implemented in java by the sun.misc.Launcher$ExtClassLoader class.
  • System/Application class loader: It is a child of the extension class loader. It is responsible to load classes from the application classpath. It internally uses Environment Variable which mapped to java.class.path. It is also implemented in Java by the sun.misc.Launcher$AppClassLoader class.
Java
// Java code to demonstrate Class Loader subsystem public class Test {     public static void main(String[] args)     {         // String class is loaded by bootstrap loader, and         // bootstrap loader is not Java object, hence null         System.out.println(String.class.getClassLoader());          // Test class is loaded by Application loader         System.out.println(Test.class.getClassLoader());     } } 

Output
null jdk.internal.loader.ClassLoaders$AppClassLoader@8bcc55f 

Note: JVM follows the Delegation-Hierarchy principle to load classes. System class loader delegate load request to extension class loader and extension class loader delegate request to the bootstrap class loader. If a class found in the boot-strap path, the class is loaded otherwise request again transfers to the extension class loader and then to the system class loader. At last, if the system class loader fails to load class, then we get run-time exception java.lang.ClassNotFoundException. 

2. Class Loaders

There are three primary types of class loaders:

  • Bootstrap Class Loader: Loads core Java API classes from the JAVA_HOME/lib directory. It is implemented in native code and is not a Java object.
  • Extension Class Loader: Loads classes from the JAVA_HOME/jre/lib/ext directory or any directory specified by the java.ext.dirs system property. It is implemented in Java.
  • System/Application Class Loader: Loads classes from the application classpath, which is specified by the java.class.path environment variable. It is also implemented in Java.
Class Loaders

Example:

public class Test {
public static void main(String[] args) {
System.out.println(String.class.getClassLoader());
System.out.println(Test.class.getClassLoader());
}
}

3. JVM Memory Areas

  • Method area: In the method area, all class level information like class name, immediate parent class name, methods and variables information etc. are stored, including static variables. There is only one method area per JVM, and it is a shared resource. 
  • Heap area: Information of all objects is stored in the heap area. There is also one Heap Area per JVM. It is also a shared resource.
  • Stack area: For every thread, JVM creates one run-time stack which is stored here. Every block of this stack is called activation record/stack frame which stores methods calls. All local variables of that method are stored in their corresponding frame. After a thread terminates, its run-time stack will be destroyed by JVM. It is not a shared resource.
  • PC Registers: Store address of current execution instruction of a thread. Obviously, each thread has separate PC Registers.
  • Native method stacks: For every thread, a separate native stack is created. It stores native method information. 
JVM Memory Area

4. Execution Engine 

Execution engine executes the “.class” (bytecode). It reads the byte-code line by line, uses data and information present in various memory area and executes instructions. It can be classified into three parts:

  • Interpreter: It interprets the bytecode line by line and then executes. The disadvantage here is that when one method is called multiple times, every time interpretation is required.
  • Just-In-Time Compiler(JIT) : It is used to increase the efficiency of an interpreter. It compiles the entire bytecode and changes it to native code so whenever the interpreter sees repeated method calls, JIT provides direct native code for that part so re-interpretation is not required, thus efficiency is improved.
  • Garbage Collector: It destroys un-referenced objects. For more on Garbage Collector, refer Garbage Collector.

5. Java Native Interface (JNI)

It is an interface that interacts with the Native Method Libraries and provides the native libraries(C, C++) required for the execution. It enables JVM to call C/C++ libraries and to be called by C/C++ libraries which may be specific to hardware.

6. Native Method Libraries

These are collections of native libraries required for executing native methods. They include libraries written in languages like C and C++.

For more information refer to this YouTube video link: How Java Works?



Next Article
JDK in Java

G

Gaurav Miglani
Improve
Article Tags :
  • Java
  • java-JVM
Practice Tags :
  • Java

Similar Reads

  • Java Tutorial
    Java is a high-level, object-oriented programming language used to build applications across platforms—from web and mobile apps to enterprise software. It is known for its Write Once, Run Anywhere capability, meaning code written in Java can run on any device that supports the Java Virtual Machine (
    11 min read
  • Java Overview

    • Introduction to Java
      Java is a class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is intended to let application developers Write Once and Run Anywhere (WORA), meaning that compiled Java code can run on all platforms that support Java without the
      9 min read

    • The Complete History of Java Programming Language
      Java is an Object-Oriented programming language developed by James Gosling in the early 1990s. The team initiated this project to develop a language for digital devices such as set-top boxes, televisions, etc. Originally, C++ was considered to be used in the project, but the idea was rejected for se
      6 min read

    • How to Install Java on Windows, Linux and macOS?
      Java is a versatile programming language widely used for building applications. To start coding in Java, you first need to install the Java Development Kit (JDK) on your system. This article provides detailed steps for installing Java on Windows 7, 8, 10, 11, Linux Ubuntu, and macOS. Download and In
      5 min read

    • Setting up Environment Variables For Java - Complete Guide to Set JAVA_HOME
      In the journey to learning the Java programming language, setting up environment variables for Java is essential because it helps the system locate the Java tools needed to run the Java programs. Now, this guide on how to setting up environment variables for Java is a one-place solution for Mac, Win
      6 min read

    • How JVM Works - JVM Architecture
      JVM(Java Virtual Machine) runs Java applications as a run-time engine. JVM is the one that calls the main method present in a Java code. JVM is a part of JRE(Java Runtime Environment). Java applications are called WORA (Write Once Run Anywhere). This means a programmer can develop Java code on one s
      7 min read

    • JDK in Java
      The Java Development Kit (JDK) is a cross-platformed software development environment that offers a collection of tools and libraries necessary for developing Java-based software applications and applets. It is a core package used in Java, along with the JVM (Java Virtual Machine) and the JRE (Java
      5 min read

    • Differences Between JDK, JRE and JVM
      Understanding the difference between JDK, JRE, and JVM plays a very important role in understanding how Java works and how each component contributes to the development and execution of Java applications. The main difference between JDK, JRE, and JVM is: JDK: Java Development Kit is a software devel
      4 min read

    Java Basics

    • Java Syntax
      Java is an object-oriented programming language that is known for its simplicity, portability, and robustness. The syntax of Java programming language is very closely aligned with C and C++, which makes it easier to understand. Java Syntax refers to a set of rules that define how Java programs are w
      6 min read

    • Java Hello World Program
      Java is one of the most popular and widely used programming languages and platforms. In this article, we will learn how to write a simple Java Program. This article will guide you on how to write, compile, and run your first Java program. With the help of Java, we can develop web and mobile applicat
      6 min read

    • Java Identifiers
      An identifier in Java is the name given to Variables, Classes, Methods, Packages, Interfaces, etc. These are the unique names used to identify programming elements. Every Java Variable must be identified with a unique name. Example: public class Test{ public static void main(String[] args) { int a =
      2 min read

    • Java Keywords
      In Java, keywords are the reserved words that have some predefined meanings and are used by the Java compiler for some internal process or represent some predefined actions. These words cannot be used as identifiers such as variable names, method names, class names, or object names. Now, let us go t
      5 min read

    • Java Data Types
      Java is statically typed and also a strongly typed language because each type of data (such as integer, character, hexadecimal, packed decimal, and so forth) is predefined as part of the programming language and all constants or variables defined for a given program must be declared with the specifi
      15 min read

    • Java Variables
      In Java, variables are containers that store data in memory. Understanding variables plays a very important role as it defines how data is stored, accessed, and manipulated. Key Components of Variables in Java: A variable in Java has three components, which are listed below: Data Type: Defines the k
      9 min read

    • Scope of Variables in Java
      The scope of variables is the part of the program where the variable is accessible. Like C/C++, in Java, all identifiers are lexically (or statically) scoped, i.e., scope of a variable can be determined at compile time and independent of the function call stack. In this article, we will learn about
      7 min read

    • Java Operators
      Java operators are special symbols that perform operations on variables or values. These operators are essential in programming as they allow you to manipulate data efficiently. They can be classified into different categories based on their functionality. In this article, we will explore different
      15 min read

    • Java User Input - Scanner Class
      The most common way to take user input in Java is using the Scanner class. It is a part of java.util package. The scanner class can handle input from different places, like as we are typing at the console, reading from a file, or working with data streams. This class was introduced in Java 5. Before
      4 min read

    Java Flow Control

    • Java if statement
      The Java if statement is the most simple decision-making statement. It is used to decide whether a certain statement or block of statements will be executed or not i.e. if a certain condition is true then a block of statements is executed otherwise not. Example: [GFGTABS] Java // Java program to ill
      5 min read

    • Java if-else Statement
      The if-else statement in Java is a powerful decision-making tool used to control the program's flow based on conditions. It executes one block of code if a condition is true and another block if the condition is false. In this article, we will learn Java if-else statement with examples. Example: [GF
      4 min read

    • Java if-else-if ladder with Examples
      The Java if-else-if ladder is used to evaluate multiple conditions sequentially. It allows a program to check several conditions and execute the block of code associated with the first true condition. If none of the conditions are true, an optional else block can execute as a fallback. Example: The
      3 min read

    • Java For Loop
      Java for loop is a control flow statement that allows code to be executed repeatedly based on a given condition. The for loop in Java provides an efficient way to iterate over a range of values, execute code multiple times, or traverse arrays and collections. Now let's go through a simple Java for l
      5 min read

    • For-Each Loop in Java
      The for-each loop in Java (also called the enhanced for loop) was introduced in Java 5 to simplify iteration over arrays and collections. It is cleaner and more readable than the traditional for loop and is commonly used when the exact index of an element is not required. Example: Using a for-each l
      8 min read

    • Java while Loop
      Java while loop is a control flow statement used to execute the block of statements repeatedly until the given condition evaluates to false. Once the condition becomes false, the line immediately after the loop in the program is executed. Let's go through a simple example of a Java while loop: [GFGT
      3 min read

    • Java Do While Loop
      Java do-while loop is an Exit control loop. Unlike for or while loop, a do-while check for the condition after executing the statements of the loop body. Example: [GFGTABS] Java // Java program to show the use of do while loop public class GFG { public static void main(String[] args) { int c = 1; //
      4 min read

    • Java Break Statement
      The Break Statement in Java is a control flow statement used to terminate loops and switch cases. As soon as the break statement is encountered from within a loop, the loop iterations stop there, and control returns from the loop immediately to the first statement after the loop. Example: [GFGTABS]
      3 min read

    • Java Continue Statement
      In Java, the continue statement is used inside the loops such as for, while, and do-while to skip the current iteration and move directly to the next iteration of the loop. Example: [GFGTABS] Java // Java Program to illustrate the use of continue statement public class Geeks { public static void mai
      4 min read

    • Java return Keyword
      return keyword in Java is a reserved keyword which is used to exit from a method, with or without a value. The usage of the return keyword can be categorized into two cases: Methods returning a valueMethods not returning a value1. Methods Returning a ValueFor the methods that define a return type, t
      4 min read

    Java Methods

    • Java Methods
      Java Methods are blocks of code that perform a specific task. A method allows us to reuse code, improving both efficiency and organization. All methods in Java must belong to a class. Methods are similar to functions and expose the behavior of objects. Example: Java program to demonstrate how to cre
      8 min read

    • How to Call a Method in Java?
      Calling a method allows to reuse code and organize our program effectively. Java Methods are the collection of statements used for performing certain tasks and for returning the result to the user. In this article, we will learn how to call different types of methods in Java with simple examples. Ex
      3 min read

    • Static Method vs Instance Method in Java
      In Java, methods are mainly divided into two parts based on how they are associated with a class, which are the static method and the Instance method. The main difference between static and instance methods is: Static method: This method belongs to the class and can be called without creating an obj
      4 min read

    • Access Modifiers in Java
      In Java, access modifiers are essential tools that define how the members of a class, like variables, methods, and even the class itself can be accessed from other parts of our program. They are an important part of building secure and modular code when designing large applications. Understanding de
      7 min read

    • Command Line Arguments in Java
      Java command-line argument is an argument i.e. passed at the time of running the Java program. In Java, the command line arguments passed from the console can be received in the Java program and they can be used as input. The users can pass the arguments during the execution bypassing the command-li
      3 min read

    • Variable Arguments (Varargs) in Java
      Variable Arguments (Varargs) in Java is a method that takes a variable number of arguments. Variable Arguments in Java simplify the creation of methods that need to take a variable number of arguments. Example: We will see the demonstration of using Varargs in Java to pass a variable number of argum
      5 min read

    Java Arrays

    • Arrays in Java
      Arrays in Java are one of the most fundamental data structures that allow us to store multiple values of the same type in a single variable. They are useful for storing and managing collections of data. Arrays in Java are objects, which makes them work differently from arrays in C/C++ in terms of me
      15+ min read

    • How to Initialize an Array in Java?
      An array in Java is a linear data structure, which is used to store multiple values of the same data type. In array each element has a unique index value, which makes it easy to access individual elements. We first need to declare the size of an array because the size of the array is fixed in Java.
      6 min read

    • Java Multi-Dimensional Arrays
      Multidimensional arrays are used to store the data in rows and columns, where each row can represent another individual array are multidimensional array. It is also known as array of arrays. The multidimensional array has more than one dimension, where each row is stored in the heap independently. T
      10 min read

    • Jagged Array in Java
      In Java, Jagged array is an array of arrays such that member arrays can be of different sizes, i.e., we can create a 2-D array but with a variable number of columns in each row. Example: arr [][]= { {1,2}, {3,4,5,6},{7,8,9}}; So, here you can check that the number of columns in row1!=row2!=row3. Tha
      5 min read

    • Arrays Class in Java
      The Arrays class in java.util package is a part of the Java Collection Framework. This class provides static methods to dynamically create and access Java arrays. It consists of only static methods and the methods of an Object class. The methods of this class can be used by the class name itself. Th
      15 min read

    • Final Arrays in Java
      As we all know final variable declared can only be initialized once whereas the reference variable once declared final can never be reassigned as it will start referring to another object which makes usage of the final impracticable. But note here that with final we are bound not to refer to another
      4 min read

    Java Strings

    • Java Strings
      In Java, a String is the type of object that can store a sequence of characters enclosed by double quotes, and every character is stored in 16 bits, i.e., using UTF 16-bit encoding. A string acts the same as an array of characters. Java provides a robust and flexible API for handling strings, allowi
      10 min read

    • Why Java Strings are Immutable?
      In Java, strings are immutable means their values cannot be changed once they are created. This feature enhances performance, security, and thread safety. In this article, we are going to learn why strings are immutable in Java and how this benefits Java applications. What Does Immutable Mean?When w
      4 min read

    • Java String concat() Method with Examples
      The string concat() method concatenates (appends) a string to the end of another string. It returns the combined string. It is used for string concatenation in Java. It returns NullPointerException if any one of the strings is Null. In this article, we will learn how to concatenate two strings in Ja
      4 min read

    • String Class in Java
      A string is a sequence of characters. In Java, objects of the String class are immutable, which means they cannot be changed once created. In this article, we are going to learn about the String class in Java. Example of String Class in Java: [GFGTABS] Java // Java Program to Create a String import
      7 min read

    • StringBuffer Class in Java
      The StringBuffer class in Java represents a sequence of characters that can be modified, which means we can change the content of the StringBuffer without creating a new object every time. It represents a mutable sequence of characters. Features of StringBuffer ClassThe key features of StringBuffer
      11 min read

    • Java StringBuilder Class
      In Java, the StringBuilder class is a part of the java.lang package that provides a mutable sequence of characters. Unlike String (which is immutable), StringBuilder allows in-place modifications, making it memory-efficient and faster for frequent string operations. Declaration: StringBuilder sb = n
      7 min read

    • String vs StringBuilder vs StringBuffer in Java
      A string is a sequence of characters. In Java, objects of String are immutable which means a constant and cannot be changed once created. In Java, String, StringBuilder, and StringBuffer are used for handling strings. The main difference is: String: Immutable, meaning its value cannot be changed onc
      6 min read

    Java OOPs Concepts

    • Java OOP(Object Oriented Programming) Concepts
      Java Object-Oriented Programming (OOPs) is a fundamental concept in Java that every developer must understand. It allows developers to structure code using classes and objects, making it more modular, reusable, and scalable. The core idea of OOPs is to bind data and the functions that operate on it,
      13 min read

    • Classes and Objects in Java
      In Java, classes and objects are basic concepts of Object Oriented Programming (OOPs) that are used to represent real-world concepts and entities. The class represents a group of objects having similar properties and behavior, or in other words, we can say that a class is a blueprint for objects, wh
      12 min read

    • Java Constructors
      In Java, constructors play an important role in object creation. A constructor is a special block of code that is called when an object is created. Its main job is to initialize the object, to set up its internal state, or to assign default values to its attributes. This process happens automaticall
      10 min read

    • Object Class in Java
      Object class in Java is present in java.lang package. Every class in Java is directly or indirectly derived from the Object class. If a class does not extend any other class then it is a direct child class of the Java Object class and if it extends another class then it is indirectly derived. The Ob
      8 min read

    • Abstraction in Java
      Abstraction in Java is the process of hiding the implementation details and only showing the essential details or features to the user. It allows to focus on what an object does rather than how it does it. The unnecessary details are not displayed to the user. Key features of abstraction: Abstractio
      10 min read

    • Encapsulation in Java
      Encapsulation is one of the core concepts in Java Object-Oriented Programming (OOP). It is the process of wrapping data (variables) and methods that operate on the data into a single unit, i.e., a class. Encapsulation is used to hide the internal implementation details of a class. This technique ens
      10 min read

    • Inheritance in Java
      Java Inheritance is a fundamental concept in OOP(Object-Oriented Programming). It is the mechanism in Java by which one class is allowed to inherit the features(fields and methods) of another class. In Java, Inheritance means creating new classes based on existing ones. A class that inherits from an
      14 min read

    • Polymorphism in Java
      Polymorphism in Java is one of the core concepts in object-oriented programming (OOP) that allows objects to behave differently based on their specific class type. The word polymorphism means having many forms, and it comes from the Greek words poly (many) and morph (forms), this means one entity ca
      7 min read

    • Method Overloading in Java
      In Java, Method Overloading allows us to define multiple methods with the same name but different parameters within a class. This difference can be in the number of parameters, the types of parameters, or the order of those parameters. Method overloading in Java is also known as Compile-time Polymor
      10 min read

    • Overriding in Java
      Overriding in Java occurs when a subclass or child class implements a method that is already defined in the superclass or base class. When a subclass provides its own version of a method that is already defined in its superclass, we call it method overriding. The subclass method must match the paren
      15 min read

    • Java Packages
      Packages in Java are a mechanism that encapsulates a group of classes, sub-packages, and interfaces. Packages are used for: Prevent naming conflicts by allowing classes with the same name to exist in different packages, like college.staff.cse.Employee and college.staff.ee.Employee.They make it easie
      9 min read

    Java Interfaces

    • Java Interface
      An Interface in Java programming language is defined as an abstract type used to specify the behaviour of a class. An interface in Java is a blueprint of a behaviour. A Java interface contains static constants and abstract methods. Key Properties of Interface: The interface in Java is a mechanism to
      13 min read

    • Interfaces and Inheritance in Java
      A class can extend another class and can implement one and more than one Java interface. Also, this topic has a major influence on the concept of Java and Multiple Inheritance. Example: [GFGTABS] Java //Driver Code Starts{ // A class can implement multiple interfaces import java.io.*; //Driver Code
      7 min read

    • Java Class vs Interfaces
      In Java, the difference between a class and an interface is syntactically similar; both contain methods and variables, but they are different in many aspects. The main difference is, A class defines the state of behaviour of objects.An interface defines the methods that a class must implement.Class
      5 min read

    • Java Functional Interfaces
      A functional interface in Java is an interface that contains only one abstract method. Functional interfaces can have multiple default or static methods, but only one abstract method. Runnable, ActionListener, and Comparator are common examples of Java functional interfaces. From Java 8 onwards, lam
      7 min read

    • Nested Interface in Java
      We can declare interfaces as members of a class or another interface. Such an interface is called a member interface or nested interface. Interfaces declared outside any class can have only public and default (package-private) access specifiers. In Java, nested interfaces (interfaces declared inside
      5 min read

    • Marker Interface in Java
      Marker Interface in Java is an empty interface means having no field or methods. Examples of marker interface are Serializable, Cloneable and Remote interface. All these interfaces are empty interfaces. Example: [GFGTABS] Java //Driver Code Starts{ interface Serializable { // Marker Interface } //Dr
      4 min read

    • Java Comparator Interface
      The Comparator interface in Java is used to sort the objects of user-defined classes. The Comparator interface is present in java.util package. This interface allows us to define custom comparison logic outside of the class for which instances we want to sort. The comparator interface is useful when
      6 min read

    Java Collections

    • Collections in Java
      Any group of individual objects that are represented as a single unit is known as a Java Collection of Objects. In Java, a separate framework named the "Collection Framework" has been defined in JDK 1.2 which holds all the Java Collection Classes and Interface in it. In Java, the Collection interfac
      15+ min read

    • Collections Class in Java
      Collections class in Java is one of the utility classes in Java Collections Framework. The java.util package contains the Collections class in Java. Java Collections class is used with the static methods that operate on the collections or return the collection. All the methods of this class throw th
      13 min read

    • Collection Interface in Java
      The Collection interface in Java is a core member of the Java Collections Framework located in the java.util package. It is one of the root interfaces of the Java Collection Hierarchy. The Collection interface is not directly implemented by any class. Instead, it is implemented indirectly through it
      6 min read

    • Java List Interface
      The List Interface in Java extends the Collection Interface and is a part of the java.util package. It is used to store the ordered collections of elements. In a Java List, we can organize and manage the data sequentially. Key Features: Maintained the order of elements in which they are added.Allows
      15+ min read

    • ArrayList in Java
      Java ArrayList is a part of the collections framework and it is a class of java.util package. It provides us with dynamic-sized arrays in Java. The main advantage of ArrayList is that, unlike normal arrays, we don't need to mention the size when creating ArrayList. It automatically adjusts its capac
      10 min read

    • Vector Class in Java
      The Vector class in Java implements a growable array of objects. Vectors were legacy classes, but now it is fully compatible with collections. It comes under java.util package and implement the List interface. Key Features of Vector: It expands as elements are added.Vector class is synchronized in n
      12 min read

    • LinkedList in Java
      Linked List is a part of the Collection framework present in java.util package. This class is an implementation of the LinkedList data structure which is a linear data structure where the elements are not stored in contiguous locations and every element is a separate object with a data part and addr
      13 min read

    • Stack Class in Java
      The Java Collection framework provides a Stack class, which implements a Stack data structure. The class is based on the basic principle of LIFO (last-in-first-out). Besides the basic push and pop operations, the class also provides three more functions, such as empty, search, and peek. The Stack cl
      12 min read

    • Set in Java
      The Set Interface is present in java.util package and extends the Collection interface. It is an unordered collection of objects in which duplicate values cannot be stored. It is an interface that implements the mathematical set. This interface adds a feature that restricts the insertion of duplicat
      14 min read

    • Java HashSet
      HashSet in Java implements the Set interface of Collections Framework. It is used to store the unique elements and it doesn't maintain any specific order of elements. Can store the Null values.Uses HashMap (implementation of hash table data structure) internally.Also implements Serializable and Clon
      12 min read

    • TreeSet in Java
      TreeSet is one of the most important implementations of the SortedSet interface in Java that uses a Tree(red - black tree) for storage. The ordering of the elements is maintained by a set using their natural ordering whether or not an explicit comparator is provided. This must be consistent with equ
      13 min read

    • Java LinkedHashSet
      LinkedHashSet in Java implements the Set interface of the Collection Framework. It combines the functionality of a HashSet with a LinkedList to maintain the insertion order of elements. Stores unique elements only.Maintains insertion order.Provides faster iteration compared to HashSet.Allows null el
      8 min read

    • Queue Interface In Java
      The Queue Interface is a part of java.util package and extends the Collection interface. It stores and processes the data in order means elements are inserted at the end and removed from the front. Key Features: Most implementations, like PriorityQueue, do not allow null elements.Implementation Clas
      12 min read

    • PriorityQueue in Java
      The PriorityQueue class in Java is part of the java.util package. It implements a priority heap-based queue that processes elements based on their priority rather than the FIFO (First-In-First-Out) concept of a Queue. Key Points: The PriorityQueue is based on the Priority Heap. The elements of the p
      9 min read

    • Deque Interface in Java
      Deque Interface present in java.util package is a subtype of the queue interface. The Deque is related to the double-ended queue that supports adding or removing elements from either end of the data structure. It can either be used as a queue(first-in-first-out/FIFO) or as a stack(last-in-first-out/
      10 min read

    • Map Interface in Java
      In Java, the Map Interface is part of the java.util package and represents a mapping between a key and a value. The Java Map interface is not a subtype of the Collections interface. So, it behaves differently from the rest of the collection types. Key Features: No Duplicates in Keys: Keys should be
      12 min read

    • HashMap in Java
      In Java, HashMap is part of the Java Collections Framework and is found in the java.util package. It provides the basic implementation of the Map interface in Java. HashMap stores data in (key, value) pairs. Each key is associated with a value, and you can access the value by using the corresponding
      15+ min read

    • Java LinkedHashMap
      LinkedHashMap in Java implements the Map interface of the Collections Framework. It stores key-value pairs while maintaining the insertion order of the entries. It maintains the order in which elements are added. Stores unique key-value pairs.Maintains insertion order.Allows one null key and multipl
      7 min read

    • Hashtable in Java
      Hashtable class, introduced as part of the Java Collections framework, implements a hash table that maps keys to values. Any non-null object can be used as a key or as a value. To successfully store and retrieve objects from a hashtable, the objects used as keys must implement the hashCode method an
      13 min read

    • Java Dictionary Class
      Dictionary class in Java is an abstract class that represents a collection of key-value pairs, where keys are unique and used to access the values. It was part of the Java Collections Framework and it was introduced in Java 1.0 but has been largely replaced by the Map interface since Java 1.2. Store
      5 min read

    • SortedSet Interface in Java with Examples
      The SortedSet interface is present in java.util package extends the Set interface present in the collection framework. It is an interface that implements the mathematical set. This interface contains the methods inherited from the Set interface and adds a feature that stores all the elements in this
      9 min read

    • Java Comparator Interface
      The Comparator interface in Java is used to sort the objects of user-defined classes. The Comparator interface is present in java.util package. This interface allows us to define custom comparison logic outside of the class for which instances we want to sort. The comparator interface is useful when
      6 min read

    • Java Comparable Interface
      The Comparable interface in Java is used to define the natural ordering of objects for a user-defined class. It is part of the java.lang package and it provides a compareTo() method to compare instances of the class. A class has to implement a Comparable interface to define its natural ordering. Exa
      4 min read

    • Java Comparable vs Comparator
      In Java, both Comparable and Comparator interfaces are used for sorting objects. The main difference between Comparable and Comparator is: Comparable: It is used to define the natural ordering of the objects within the class.Comparator: It is used to define custom sorting logic externally.Difference
      5 min read

    • Java Iterator
      An Iterator in Java is an interface used to traverse elements in a Collection sequentially. It provides methods like hasNext(), next(), and remove() to loop through collections and perform manipulation. An Iterator is a part of the Java Collection Framework, and we can use it with collections like A
      7 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences