Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Java Arrays
  • Java Strings
  • Java OOPs
  • Java Collection
  • Java 8 Tutorial
  • Java Multithreading
  • Java Exception Handling
  • Java Programs
  • Java Project
  • Java Collections Interview
  • Java Interview Questions
  • Java MCQs
  • Spring
  • Spring MVC
  • Spring Boot
  • Hibernate
Open In App
Next Article:
Java Relational Operators with Examples
Next article icon

Java Unary Operator with Examples

Last Updated : 29 Jul, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Operators constitute the basic building block to any programming language. Java too provides many types of operators which can be used according to the need to perform various calculations and functions be it logical, arithmetic, relational, etc. They are classified based on the functionality they provide. Here are a few types:

  1. Arithmetic Operators
  2. Unary Operators
  3. Assignment Operator
  4. Relational Operators
  5. Logical Operators
  6. Ternary Operator
  7. Bitwise Operators
  8. Shift Operators

Unary Operators in Java

Java unary operators are the types that need only one operand to perform any operation like increment, decrement, negation, etc. It consists of various arithmetic, logical and other operators that operate on a single operand. Let’s look at the various unary operators in detail and see how they operate. 

Operator 1: Unary minus(-)

This operator can be used to convert a positive value to a negative one. 

Syntax: 

-(operand)

Illustration: 

a = -10

Example:

Java
// Java Program to Illustrate Unary - Operator  // Importing required classes import java.io.*;  // Main class class GFG {      // Main driver method     public static void main(String[] args)     {         // Declaring a custom variable         int n1 = 20;          // Printing the above variable         System.out.println("Number = " + n1);          // Performing unary operation         n1 = -n1;          // Printing the above result number         // after unary operation         System.out.println("Result = " + n1);     } } 

Output
Number = 20 Result = -20 

Operator 2: ‘NOT’ Operator(!)

This is used to convert true to false or vice versa. Basically, it reverses the logical state of an operand.

Syntax: 

!(operand)

Illustration: 

cond = !true;
// cond < false

Example:

Java
// Java Program to Illustrate Unary NOT Operator  // Importing required classes import java.io.*;  // Main class class GFG {      // Main driver method     public static void main(String[] args)     {         // Initializing variables         boolean cond = true;         int a = 10, b = 1;          // Displaying values stored in above variables         System.out.println("Cond is: " + cond);         System.out.println("Var1 = " + a);         System.out.println("Var2 = " + b);          // Displaying values stored in above variables         // after applying unary NOT operator         System.out.println("Now cond is: " + !cond);         System.out.println("!(a < b) = " + !(a < b));         System.out.println("!(a > b) = " + !(a > b));     } } 

Output
Cond is: true Var1 = 10 Var2 = 1 Now cond is: false !(a < b) = true !(a > b) = false 

Operator 3: Increment(++)

It is used to increment the value of an integer. It can be used in two separate ways: 

3.1: Post-increment operator

When placed after the variable name, the value of the operand is incremented but the previous value is retained temporarily until the execution of this statement and it gets updated before the execution of the next statement. 

Syntax: 

num++

Illustration: 

num = 5
num++ = 6

3.2: Pre-increment operator

When placed before the variable name, the operand’s value is incremented instantly.

Syntax: 

++num

Illustration: 

num = 5
++num = 6

Operator 4: Decrement ( — )

It is used to decrement the value of an integer. It can be used in two separate ways: 

4.1: Post-decrement operator

When placed after the variable name, the value of the operand is decremented but the previous values is retained temporarily until the execution of this statement and it gets updated before the execution of the next statement. 

Syntax: 

num--

Illustration: 

num = 5
num-- = 4 // Value will be decremented before execution of next statement.

4.2: Pre-decrement operator

When placed before the variable name, the operand’s value is decremented instantly. 

Syntax: 

--num

Illustration:

num = 5
--num = 4 //output is 5, value is decremented before execution of next statement

Operator 5: Bitwise Complement(~)

This unary operator returns the one’s complement representation of the input value or operand, i.e, with all bits inverted, which means it makes every 0 to 1, and every 1 to 0. 

Syntax: 

~(operand)

Illustration: 

a = 5 [0101 in Binary]
result = ~5
This performs a bitwise complement of 5
~0101 = 1010 = 10 (in decimal)
Then the compiler will give 2’s complement
of that number.
2’s complement of 10 will be -6.
result = -6

Example:

Java
// Java program to Illustrate Unary // Bitwise Complement Operator  // Importing required classes import java.io.*;  // Main class class GFG {      // Main driver method     public static void main(String[] args)     {         // Declaring a variable         int n1 = 6, n2 = -2;          // Printing numbers on console         System.out.println("First Number = " + n1);         System.out.println("Second Number = " + n2);          // Printing numbers on console after         // performing bitwise complement         System.out.println(             n1 + "'s bitwise complement = " + ~n1);         System.out.println(             n2 + "'s bitwise complement = " + ~n2);     } } 

Output
First Number = 6 Second Number = -2 6's bitwise complement = -7 -2's bitwise complement = 1 

Example program in Java that implements all basic unary operators for user input:

Java
import java.util.Scanner;  public class UnaryOperators {     public static void main(String[] args) {         Scanner sc = new Scanner(System.in);          // Uncomment this block for user input         // System.out.print("Enter a number: ");         // int num = sc.nextInt();                  // Initialize num         int num = 10;          // Unary plus         int result = +num;         System.out.println("The value of result after unary plus is: " + result);          // Unary minus         result = -num;         System.out.println("The value of result after unary minus is: " + result);          // Pre-increment         result = ++num;         System.out.println("The value of result after pre-increment is: " + result);          // Post-increment         result = num++;         System.out.println("The value of result after post-increment is: " + result);          // Pre-decrement         result = --num;         System.out.println("The value of result after pre-decrement is: " + result);          // Post-decrement         result = num--;         System.out.println("The value of result after post-decrement is: " + result);          // Close the scanner         sc.close();     } } 

Output
The value of result after unary plus is: 10 The value of result after unary minus is: -10 The value of result after pre-increment is: 11 The value of result after post-increment is: 11 The value of re...

Explanation: 

The above program implements all basic unary operators in Java using user input. The program uses the Scanner class from the java.util package to read user input from the console. The following steps describe how the program works in detail:

  • Import the java.util.Scanner class: The program starts by importing the Scanner class, which is used to read input from the console.
  • Create a Scanner object: Next, a Scanner object sc is created and associated with the standard input stream System.in.
  • Read the number from the user: The program prompts the user to enter a number and uses the nextInt() method of the Scanner class to read the input. The input is stored in the num variable of type int.
  • Use unary plus operator: The program uses the unary plus operator + to perform a positive operation on num. The result of the operation is stored in the result variable of type int.
  • Use unary minus operator: The program uses the unary minus operator – to perform a negative operation on num. The result of the operation is stored in the result variable.
  • Use pre-increment operator: The program uses the pre-increment operator ++ to increment the value of num before using it in an expression. The result of the operation is stored in the result variable.
  • Use post-increment operator: The program uses the post-increment operator ++ to increment the value of num after using it in an expression. The result of the operation is stored in the result variable.
  • Use pre-decrement operator: The program uses the pre-decrement operator — to decrement the value of num before using it in an expression. The result of the operation is stored in the result variable.
  • Use post-decrement operator: The program uses the post-decrement operator — to decrement the value of num after using it in an expression. The result of the operation is stored in the result variable.
  • Print the results: The program prints out the final values of result using the println method of the System.out object after each operation.
  • This program demonstrates how to use basic unary operators in Java. The Scanner class makes it easy to read user input from the console, and various unary operators are used to modify the value of the num variable in the program.

Advantages 

The main advantage of using unary operators in Java is that they provide a simple and efficient way to modify the value of a variable. Some specific advantages of using unary operators are:

  1. Concise and Easy to Use: Unary operators are simple to use and require only one operand. They are easy to understand and make code more readable and concise.
  2. Faster than Other Operators: Unary operators are faster than other operators as they only require one operand. This makes them ideal for operations that need to be performed quickly, such as incrementing a counter.
  3. Pre- and Post-Increment/Decrement: Unary operators provide both pre- and post-increment and decrement options, which makes them useful for a variety of use cases. For example, the pre-increment operator can be used to increment the value of a variable before using it in an expression, while the post-increment operator can be used to increment the value of a variable after using it in an expression.
  4. Modifying Primitive Types: Unary operators can be used to modify the value of primitive types such as int, long, float, double, etc.

Overall, unary operators provide a simple and efficient way to perform operations on variables in Java, and they can be used in a variety of scenarios to make code more readable and concise.



Next Article
Java Relational Operators with Examples
author
chinmoy lenka
Improve
Article Tags :
  • Java
  • Java-Operators
Practice Tags :
  • Java
  • Java-Operators

Similar Reads

    Basics of Java

    • If you are new to the world of coding and want to start your coding journey with Java, then this learn Java a beginners guide gives you a complete overview of how to start Java programming. Java is among the most popular and widely used programming languages and platforms. A platform is an environme
      10 min read

    • Java is a class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is intended to let application developers Write Once and Run Anywhere (WORA), meaning that compiled Java code can run on all platforms that support Java without the
      9 min read

    • Nowadays Java and C++ programming languages are vastly used in competitive coding. Due to some awesome features, these two programming languages are widely used in industries as well as comepetitive programming . C++ is a widely popular language among coders for its efficiency, high speed, and dynam
      6 min read

    • In the journey to learning the Java programming language, setting up environment variables for Java is essential because it helps the system locate the Java tools needed to run the Java programs. Now, this guide on how to setting up environment variables for Java is a one-place solution for Mac, Win
      6 min read

    • Java is an object-oriented programming language that is known for its simplicity, portability, and robustness. The syntax of Java programming language is very closely aligned with C and C++, which makes it easier to understand. Java Syntax refers to a set of rules that define how Java programs are w
      6 min read

    • Java is one of the most popular and widely used programming languages and platforms. In this article, we will learn how to write a simple Java Program. This article will guide you on how to write, compile, and run your first Java program. With the help of Java, we can develop web and mobile applicat
      6 min read

    • Understanding the difference between JDK, JRE, and JVM plays a very important role in understanding how Java works and how each component contributes to the development and execution of Java applications. The main difference between JDK, JRE, and JVM is: JDK: Java Development Kit is a software devel
      4 min read

    • JVM(Java Virtual Machine) runs Java applications as a run-time engine. JVM is the one that calls the main method present in a Java code. JVM is a part of JRE(Java Runtime Environment). Java applications are called WORA (Write Once Run Anywhere). This means a programmer can develop Java code on one s
      7 min read

    • An identifier in Java is the name given to Variables, Classes, Methods, Packages, Interfaces, etc. These are the unique names used to identify programming elements. Every Java Variable must be identified with a unique name. Example: public class Test{ public static void main(String[] args) { int a =
      2 min read

    Variables & DataTypes in Java

    • In Java, variables are containers that store data in memory. Understanding variables plays a very important role as it defines how data is stored, accessed, and manipulated. Key Components of Variables in Java: A variable in Java has three components, which are listed below: Data Type: Defines the k
      9 min read

    • The scope of variables is the part of the program where the variable is accessible. Like C/C++, in Java, all identifiers are lexically (or statically) scoped, i.e., scope of a variable can be determined at compile time and independent of the function call stack. In this article, we will learn about
      7 min read

    • Java is statically typed and also a strongly typed language because each type of data (such as integer, character, hexadecimal, packed decimal, and so forth) is predefined as part of the programming language and all constants or variables defined for a given program must be declared with the specifi
      15 min read

    Operators in Java

    • Java operators are special symbols that perform operations on variables or values. These operators are essential in programming as they allow you to manipulate data efficiently. They can be classified into different categories based on their functionality. In this article, we will explore different
      15 min read

    • Operators constitute the basic building block to any programming language. Java too provides many types of operators which can be used according to the need to perform various calculations and functions, be it logical, arithmetic, relational, etc. They are classified based on the functionality they
      6 min read

    • Operators constitute the basic building block of any programming language. Java too provides many types of operators which can be used according to the need to perform various calculations and functions, be it logical, arithmetic, relational, etc. They are classified based on the functionality they
      7 min read

    • Operators constitute the basic building block to any programming language. Java too provides many types of operators which can be used according to the need to perform various calculations and functions be it logical, arithmetic, relational, etc. They are classified based on the functionality they p
      8 min read

    • Operators constitute the basic building block to any programming language. Java too provides many types of operators which can be used according to the need to perform various calculations and functions, be it logical, arithmetic, relational, etc. They are classified based on the functionality they
      10 min read

    • Logical operators are used to perform logical "AND", "OR", and "NOT" operations, i.e., the functions similar to AND gate and OR gate in digital electronics. They are used to combine two or more conditions/constraints or to complement the evaluation of the original condition under particular consider
      8 min read

    • Operators constitute the basic building block of any programming language. Java provides many types of operators that can be used according to the need to perform various calculations and functions, be it logical, arithmetic, relational, etc. They are classified based on the functionality they provi
      5 min read

    • In Java, Operators are special symbols that perform specific operations on one or more than one operands. They build the foundation for any type of calculation or logic in programming. There are so many operators in Java, among all, bitwise operators are used to perform operations at the bit level.
      6 min read

    Packages in Java

    • Packages in Java are a mechanism that encapsulates a group of classes, sub-packages, and interfaces. Packages are used for: Prevent naming conflicts by allowing classes with the same name to exist in different packages, like college.staff.cse.Employee and college.staff.ee.Employee.They make it easie
      9 min read

    Flow Control in Java

    • Decision-making statements in Java execute a block of code based on a condition. Decision-making in programming is similar to decision-making in real life. In programming, we also face situations where we want a certain block of code to be executed when some condition is fulfilled. A programming lan
      10 min read

    • The Java if statement is the most simple decision-making statement. It is used to decide whether a certain statement or block of statements will be executed or not i.e. if a certain condition is true then a block of statements is executed otherwise not. Example: [GFGTABS] Java // Java program to ill
      5 min read

    • The if-else statement in Java is a powerful decision-making tool used to control the program's flow based on conditions. It executes one block of code if a condition is true and another block if the condition is false. In this article, we will learn Java if-else statement with examples. Example: [GF
      4 min read

    • The Java if-else-if ladder is used to evaluate multiple conditions sequentially. It allows a program to check several conditions and execute the block of code associated with the first true condition. If none of the conditions are true, an optional else block can execute as a fallback. Example: The
      3 min read

    Loops in Java

    • Looping in programming languages is a feature that facilitates the execution of a set of instructions repeatedly while some condition evaluates to true. Java provides three ways for executing the loops. While all the ways provide similar basic functionality, they differ in their syntax and condition
      7 min read

    • Java for loop is a control flow statement that allows code to be executed repeatedly based on a given condition. The for loop in Java provides an efficient way to iterate over a range of values, execute code multiple times, or traverse arrays and collections. Now let's go through a simple Java for l
      5 min read

    • Java while loop is a control flow statement used to execute the block of statements repeatedly until the given condition evaluates to false. Once the condition becomes false, the line immediately after the loop in the program is executed. Let's go through a simple example of a Java while loop: [GFGT
      3 min read

    • Java do-while loop is an Exit control loop. Unlike for or while loop, a do-while check for the condition after executing the statements of the loop body. Example: [GFGTABS] Java // Java program to show the use of do while loop public class GFG { public static void main(String[] args) { int c = 1; //
      4 min read

    • The for-each loop in Java (also called the enhanced for loop) was introduced in Java 5 to simplify iteration over arrays and collections. It is cleaner and more readable than the traditional for loop and is commonly used when the exact index of an element is not required. Example: Using a for-each l
      8 min read

    Jump Statements in Java

    • In Java, the continue statement is used inside the loops such as for, while, and do-while to skip the current iteration and move directly to the next iteration of the loop. Example: [GFGTABS] Java // Java Program to illustrate the use of continue statement public class Geeks { public static void mai
      4 min read

    • The Break Statement in Java is a control flow statement used to terminate loops and switch cases. As soon as the break statement is encountered from within a loop, the loop iterations stop there, and control returns from the loop immediately to the first statement after the loop. Example: [GFGTABS]
      3 min read

    • return keyword in Java is a reserved keyword which is used to exit from a method, with or without a value. The usage of the return keyword can be categorized into two cases: Methods returning a valueMethods not returning a value1. Methods Returning a ValueFor the methods that define a return type, t
      4 min read

    Arrays in Java

    • Arrays in Java are one of the most fundamental data structures that allow us to store multiple values of the same type in a single variable. They are useful for storing and managing collections of data. Arrays in Java are objects, which makes them work differently from arrays in C/C++ in terms of me
      15+ min read

    • Multidimensional arrays are used to store the data in rows and columns, where each row can represent another individual array are multidimensional array. It is also known as array of arrays. The multidimensional array has more than one dimension, where each row is stored in the heap independently. T
      10 min read

    • In Java, Jagged array is an array of arrays such that member arrays can be of different sizes, i.e., we can create a 2-D array but with a variable number of columns in each row. Example: arr [][]= { {1,2}, {3,4,5,6},{7,8,9}}; So, here you can check that the number of columns in row1!=row2!=row3. Tha
      5 min read

    Strings in Java

    • In Java, a String is the type of object that can store a sequence of characters enclosed by double quotes, and every character is stored in 16 bits, i.e., using UTF 16-bit encoding. A string acts the same as an array of characters. Java provides a robust and flexible API for handling strings, allowi
      10 min read

    • A string is a sequence of characters. In Java, objects of the String class are immutable, which means they cannot be changed once created. In this article, we are going to learn about the String class in Java. Example of String Class in Java: [GFGTABS] Java // Java Program to Create a String import
      7 min read

    • The StringBuffer class in Java represents a sequence of characters that can be modified, which means we can change the content of the StringBuffer without creating a new object every time. It represents a mutable sequence of characters. Features of StringBuffer ClassThe key features of StringBuffer
      11 min read

    • In Java, the StringBuilder class is a part of the java.lang package that provides a mutable sequence of characters. Unlike String (which is immutable), StringBuilder allows in-place modifications, making it memory-efficient and faster for frequent string operations. Declaration: StringBuilder sb = n
      7 min read

    OOPS in Java

    • Java Object-Oriented Programming (OOPs) is a fundamental concept in Java that every developer must understand. It allows developers to structure code using classes and objects, making it more modular, reusable, and scalable. The core idea of OOPs is to bind data and the functions that operate on it,
      13 min read

    • In Java, classes and objects are basic concepts of Object Oriented Programming (OOPs) that are used to represent real-world concepts and entities. The class represents a group of objects having similar properties and behavior, or in other words, we can say that a class is a blueprint for objects, wh
      12 min read

    • Java Methods are blocks of code that perform a specific task. A method allows us to reuse code, improving both efficiency and organization. All methods in Java must belong to a class. Methods are similar to functions and expose the behavior of objects. Example: Java program to demonstrate how to cre
      8 min read

    • In Java, access modifiers are essential tools that define how the members of a class, like variables, methods, and even the class itself can be accessed from other parts of our program. They are an important part of building secure and modular code when designing large applications. Understanding de
      7 min read

    • A Wrapper class in Java is one whose object wraps or contains primitive data types. When we create an object in a wrapper class, it contains a field, and in this field, we can store primitive data types. In other words, we can wrap a primitive value into a wrapper class object. Let's check on the wr
      6 min read

    • Firstly the question that hits the programmers is when we have primitive data types then why does there arise a need for the concept of wrapper classes in java. It is because of the additional features being there in the Wrapper class over the primitive data types when it comes to usage. These metho
      3 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences