Iterative Preorder Traversal
Last Updated : 09 Apr, 2025
Given a binary tree, write an iterative function to print the Preorder traversal of the tree. The Preorder traversal follows the order: Root → Left → Right.
Examples:
Input:
1
/ \
2 3
/ \
4 5
Output: 1 2 4 5 3
Explanation: Preorder traversal (Root->Left->Right) of the tree is 1 2 4 5 3.
Input:
8
/ \
1 5
\ / \
7 10 6
\ /
10 6
Output: 8 1 7 10 5 10 6 6
Explanation:
Preorder traversal (Root->Left->Right) of the tree is 8 1 7 10 5 10 6 6.
[Naive Approach] Simple Iterative Preorder (with stack) – O(n) time and O(n) space
Following is a simple stack based iterative process to print Preorder traversal.
- Create an empty stack and push root node to stack.
- Do the following while is not empty.
- Pop an item from the stack and print it.
- Push right child of a popped item to stack
- Push left child of a popped item to stack
The right child is pushed before the left child to make sure that the left subtree is processed first.
C++ #include <iostream> #include <vector> #include <stack> using namespace std; struct Node { int data; Node* left; Node* right; Node(int x) { data = x; left = right = nullptr; } }; vector<int> preOrder(Node* root) { vector<int> res; if (root == nullptr) return res; stack<Node*> s; s.push(root); while (!s.empty()) { Node* curr = s.top(); s.pop(); res.push_back(curr->data); if (curr->right != nullptr) s.push(curr->right); if (curr->left != nullptr) s.push(curr->left); } return res; } int main() { Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); vector<int> preorder = preOrder(root); for (int val : preorder) { cout << val << " "; } cout << endl; return 0; }
Java import java.util.ArrayList; import java.util.List; import java.util.Stack; class Node { int data; Node left, right; Node(int data) { this.data = data; left = right = null; } } public class GfG { public static List<Integer> preOrder(Node root) { List<Integer> res = new ArrayList<>(); if (root == null) return res; Stack<Node> s = new Stack<>(); s.push(root); while (!s.isEmpty()) { Node curr = s.pop(); res.add(curr.data); if (curr.right != null) s.push(curr.right); if (curr.left != null) s.push(curr.left); } return res; } public static void main(String[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); List<Integer> preorder = preOrder(root); for (int val : preorder) { System.out.print(val + " "); } System.out.println(); } }
Python class Node: def __init__(self, data): self.data = data self.left = None self.right = None def preOrder(root): res = [] if root is None: return res stack = [root] while stack: curr = stack.pop() res.append(curr.data) if curr.right: stack.append(curr.right) if curr.left: stack.append(curr.left) return res if __name__ == '__main__': root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) preorder = preOrder(root) print(' '.join(map(str, preorder)))
C# using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node(int data) { this.data = data; left = right = null; } } class GfG { public static List<int> PreOrder(Node root) { List<int> res = new List<int>(); if (root == null) return res; Stack<Node> s = new Stack<Node>(); s.Push(root); while (s.Count > 0) { Node curr = s.Pop(); res.Add(curr.data); if (curr.right != null) s.Push(curr.right); if (curr.left != null) s.Push(curr.left); } return res; } static void Main(string[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); List<int> preorder = PreOrder(root); Console.WriteLine(string.Join(" ", preorder)); } }
JavaScript class Node { constructor(data) { this.data = data; this.left = null; this.right = null; } } function preOrder(root) { const res = []; if (root === null) return res; const stack = [root]; while (stack.length > 0) { const curr = stack.pop(); res.push(curr.data); if (curr.right) stack.push(curr.right); if (curr.left) stack.push(curr.left); } return res; } const root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); const preorder = preOrder(root); console.log(preorder.join(' '));
[Better Approach] Iterative Preorder with Current Pointer (with stack) – O(n) time and O(n) space
In the previous solution we can see that the left child is popped as soon as it is pushed to the stack, therefore it is not required to push it into the stack.
The idea is to start traversing the tree from the root node and keep printing the left child while exists and simultaneously, push the right child of every node in an auxiliary stack. Once we reach a null node, pop a right child from the auxiliary stack and repeat the process while the auxiliary stack is not empty.
C++ #include <iostream> #include <stack> #include <vector> using namespace std; struct Node { int data; Node *left, *right; Node(int data) { this->data = data; this->left = this->right = nullptr; } }; vector<int> preOrder(Node* root) { vector<int> res; if (root == NULL) return res; stack<Node*> s; Node* curr = root; while (!s.empty() || curr != NULL) { while (curr != NULL) { res.push_back(curr->data); if (curr->right) s.push(curr->right); curr = curr->left; } if (!s.empty()) { curr = s.top(); s.pop(); } } return res; } int main() { Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); vector<int> res = preOrder(root); for (int x : res) { cout << x << " "; } cout << endl; return 0; }
Java import java.util.ArrayList; import java.util.List; import java.util.Stack; class Node { int data; Node left, right; Node(int data) { this.data = data; this.left = this.right = null; } } public class GfG { static List<Integer> preOrder(Node root) { List<Integer> res = new ArrayList<>(); if (root == null) return res; Stack<Node> s = new Stack<>(); Node curr = root; while (!s.isEmpty() || curr != null) { while (curr != null) { res.add(curr.data); if (curr.right != null) s.push(curr.right); curr = curr.left; } if (!s.isEmpty()) { curr = s.pop(); } } return res; } public static void main(String[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); List<Integer> res = preOrder(root); for (int x : res) { System.out.print(x + " "); } System.out.println(); } }
Python class Node: def __init__(self, data): self.data = data self.left = None self.right = None def preOrder(root): res = [] if root is None: return res stack = [] curr = root while stack or curr: while curr: res.append(curr.data) if curr.right: stack.append(curr.right) curr = curr.left if stack: curr = stack.pop() return res if __name__ == '__main__': root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) res = preOrder(root) print(' '.join(map(str, res)))
C# using System; using System.Collections.Generic; using System.Collections; class Node { public int data; public Node left, right; public Node(int data) { this.data = data; this.left = this.right = null; } } public class GfG { static List<int> PreOrder(Node root) { List<int> res = new List<int>(); if (root == null) return res; Stack<Node> s = new Stack<Node>(); Node curr = root; while (s.Count > 0 || curr != null) { while (curr != null) { res.Add(curr.data); if (curr.right != null) s.Push(curr.right); curr = curr.left; } if (s.Count > 0) { curr = s.Pop(); } } return res; } public static void Main(string[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); List<int> res = PreOrder(root); foreach (int x in res) { Console.Write(x + " "); } Console.WriteLine(); } }
JavaScript // Node structure class Node { constructor(data) { this.data = data; this.left = null; this.right = null; } } function preOrder(root) { const res = []; if (root === null) return res; const s = []; let curr = root; while (s.length > 0 || curr !== null) { while (curr !== null) { res.push(curr.data); if (curr.right) s.push(curr.right); curr = curr.left; } if (s.length > 0) { curr = s.pop(); } } return res; } // Example usage const root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); const res = preOrder(root); console.log(res.join(' '));
[Expected Approach] Preorder Morris Traversal – O(n) time and O(1) space
Morris Traversal is a tree traversal technique that allows you to traverse a binary tree without using recursion or a stack. The Preorder Morris Traversal algorithm works by manipulating the tree’s pointers, specifically by utilizing the inorder predecessor of each node.
Algorithm for Preorder Morris Traversal:
1. If the left child of the current node is NULL:
- Print the current node’s data (since it is the root of the subtree).
- Move to the right child of the current node.
2. If the left child of the current node is NOT NULL:
- Find the inorder predecessor of the current node: The inorder predecessor is the rightmost node of the left subtree of the current node.
Two cases arise:
a) The right child of the inorder predecessor already points to the current node:
- This means we’ve already visited this node, so we can set the right child of the inorder predecessor to NULL.
- Move to the right child of the current node.
b) The right child of the inorder predecessor is NULL:
- Set the right child of the inorder predecessor to point to the current node.
- Print the current node’s data.
- Move to the left child of the current node (this is the new node to visit next).
3. Repeat the process until the current node is NULL.
C++ #include <iostream> #include <vector> using namespace std; struct Node { int data; Node* left; Node* right; Node(int item) { data = item; left = right = nullptr; } }; vector<int> morrisPreOrder(Node* node) { vector<int> res; while (node != nullptr) { if (node->left == nullptr) { res.push_back(node->data); node = node->right; } else { Node* curr = node->left; while (curr->right != nullptr && curr->right != node) { curr = curr->right; } if (curr->right == node) { curr->right = nullptr; node = node->right; } else { res.push_back(node->data); curr->right = node; node = node->left; } } } return res; } int main() { Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); vector<int> res = morrisPreOrder(root); for (int value : res) { cout << value << " "; } cout << endl; return 0; }
Java import java.util.ArrayList; import java.util.List; class Node { int data; Node left, right; Node(int item) { data = item; left = right = null; } } public class MorrisPreorder { public static List<Integer> morrisPreOrder(Node node) { List<Integer> result = new ArrayList<>(); while (node != null) { if (node.left == null) { result.add(node.data); node = node.right; } else { Node current = node.left; while (current.right != null && current.right != node) { current = current.right; } if (current.right == node) { current.right = null; node = node.right; } else { result.add(node.data); current.right = node; node = node.left; } } } return result; } public static void main(String[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); List<Integer> morrisResult = morrisPreOrder(root); for (int value : morrisResult) { System.out.print(value + " "); } System.out.println(); } }
Python class Node: def __init__(self, item): self.data = item self.left = None self.right = None def morrisPreorder(node): result = [] while node: if node.left is None: result.append(node.data) node = node.right else: current = node.left while current.right and current.right != node: current = current.right if current.right == node: current.right = None node = node.right else: result.append(node.data) current.right = node node = node.left return result if __name__ == '__main__': root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) morris_result = morrisPreorder(root) print(' '.join(map(str, morris_result)))
C# using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node(int item) { data = item; left = right = null; } } class MorrisPreorder { public static List<int> MorrisPreOrder(Node node) { List<int> result = new List<int>(); while (node != null) { if (node.left == null) { result.Add(node.data); node = node.right; } else { Node current = node.left; while (current.right != null && current.right != node) { current = current.right; } if (current.right == node) { current.right = null; node = node.right; } else { result.Add(node.data); current.right = node; node = node.left; } } } return result; } public static void Main() { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); List<int> morrisResult = MorrisPreOrder(root); foreach (int value in morrisResult) { Console.Write(value + " "); } Console.WriteLine(); } }
JavaScript class Node { constructor(item) { this.data = item; this.left = null; this.right = null; } } function morrisPreOrder(node) { const result = []; while (node) { if (node.left === null) { result.push(node.data); node = node.right; } else { let current = node.left; while (current.right !== null && current.right !== node) { current = current.right; } if (current.right === node) { current.right = null; node = node.right; } else { result.push(node.data); current.right = node; node = node.left; } } } return result; } const root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); const morrisResult = morrisPreOrder(root); console.log(morrisResult.join(' '));
Refer Preorder Traversal of Binary Tree for recursive code
Similar Reads
Binary Tree Data Structure
A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
3 min read
Introduction to Binary Tree
Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Representation of Binary TreeEach node in a Binar
15+ min read
Properties of Binary Tree
This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levels Note: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A binary tree can have at most
4 min read
Applications, Advantages and Disadvantages of Binary Tree
A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
2 min read
Binary Tree (Array implementation)
Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
6 min read
Maximum Depth of Binary Tree
Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node. Examples: Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which h
11 min read
Insertion in a Binary Tree in level order
Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner. Examples: Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner. Approach:
8 min read
Deletion in a Binary Tree
Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
12 min read
Enumeration of Binary Trees
A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
3 min read