Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Iterative Postorder Traversal | Set 1 (Using Two Stacks)
Next article icon

Iterative Preorder Traversal

Last Updated : 09 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a binary tree, write an iterative function to print the Preorder traversal of the tree. The Preorder traversal follows the order: Root → Left → Right.

Examples:

Input:
1
/ \
2 3
/ \
4 5
Output: 1 2 4 5 3
Explanation: Preorder traversal (Root->Left->Right) of the tree is 1 2 4 5 3.

Input:
8
/ \
1 5
\ / \
7 10 6
\ /
  10 6
Output: 8 1 7 10 5 10 6 6 
Explanation:
Preorder traversal (Root->Left->Right) of the tree is 8 1 7 10 5 10 6 6.


Table of Content

  • [Naive Approach] Simple Iterative Preorder (with stack) – O(n) time and O(n) space
  • [Better Approach] Iterative Preorder with Current Pointer (with stack) – O(n) time and O(n) space
  • [Expected Approach] Preorder Morris Traversal – O(n) time and O(1) space

[Naive Approach] Simple Iterative Preorder (with stack) – O(n) time and O(n) space

Following is a simple stack based iterative process to print Preorder traversal. 

  1. Create an empty stack and push root node to stack. 
  2. Do the following while is not empty. 
    1. Pop an item from the stack and print it. 
    2. Push right child of a popped item to stack 
    3. Push left child of a popped item to stack

The right child is pushed before the left child to make sure that the left subtree is processed first.

C++
#include <iostream> #include <vector> #include <stack>  using namespace std;  struct Node {     int data;     Node* left;     Node* right;      Node(int x) {         data = x;         left = right = nullptr;      } };  vector<int> preOrder(Node* root) {     vector<int> res;     if (root == nullptr)         return res;      stack<Node*> s;     s.push(root);      while (!s.empty()) {         Node* curr = s.top();         s.pop();         res.push_back(curr->data);          if (curr->right != nullptr)             s.push(curr->right);         if (curr->left != nullptr)             s.push(curr->left);     }      return res; }  int main() {     Node* root = new Node(1);     root->left = new Node(2);     root->right = new Node(3);     root->left->left = new Node(4);     root->left->right = new Node(5);      vector<int> preorder = preOrder(root);      for (int val : preorder) {         cout << val << " ";     }     cout << endl;      return 0; } 
Java
import java.util.ArrayList; import java.util.List; import java.util.Stack;  class Node {     int data;     Node left, right;      Node(int data) {         this.data = data;         left = right = null;     } }  public class GfG {     public static List<Integer> preOrder(Node root) {         List<Integer> res = new ArrayList<>();         if (root == null)             return res;          Stack<Node> s = new Stack<>();         s.push(root);          while (!s.isEmpty()) {             Node curr = s.pop();             res.add(curr.data);              if (curr.right != null)                 s.push(curr.right);             if (curr.left != null)                 s.push(curr.left);         }          return res;     }      public static void main(String[] args) {         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);          List<Integer> preorder = preOrder(root);          for (int val : preorder) {             System.out.print(val + " ");         }         System.out.println();     } } 
Python
class Node:     def __init__(self, data):         self.data = data         self.left = None         self.right = None   def preOrder(root):     res = []     if root is None:         return res      stack = [root]      while stack:         curr = stack.pop()         res.append(curr.data)          if curr.right:             stack.append(curr.right)         if curr.left:             stack.append(curr.left)      return res   if __name__ == '__main__':     root = Node(1)     root.left = Node(2)     root.right = Node(3)     root.left.left = Node(4)     root.left.right = Node(5)      preorder = preOrder(root)     print(' '.join(map(str, preorder))) 
C#
using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int data) {         this.data = data;         left = right = null;     } }  class GfG {     public static List<int> PreOrder(Node root) {         List<int> res = new List<int>();         if (root == null)             return res;          Stack<Node> s = new Stack<Node>();         s.Push(root);          while (s.Count > 0) {             Node curr = s.Pop();             res.Add(curr.data);              if (curr.right != null)                 s.Push(curr.right);             if (curr.left != null)                 s.Push(curr.left);         }          return res;     }      static void Main(string[] args) {         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);          List<int> preorder = PreOrder(root);          Console.WriteLine(string.Join(" ", preorder));     } } 
JavaScript
class Node {     constructor(data) {         this.data = data;         this.left = null;         this.right = null;     } }  function preOrder(root) {     const res = [];     if (root === null)         return res;      const stack = [root];      while (stack.length > 0) {         const curr = stack.pop();         res.push(curr.data);          if (curr.right)             stack.push(curr.right);         if (curr.left)             stack.push(curr.left);     }      return res; }  const root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5);  const preorder = preOrder(root); console.log(preorder.join(' ')); 

Output
1 2 4 5 3 

[Better Approach] Iterative Preorder with Current Pointer (with stack) – O(n) time and O(n) space

In the previous solution we can see that the left child is popped as soon as it is pushed to the stack, therefore it is not required to push it into the stack. 

The idea is to start traversing the tree from the root node and keep printing the left child while exists and simultaneously, push the right child of every node in an auxiliary stack. Once we reach a null node, pop a right child from the auxiliary stack and repeat the process while the auxiliary stack is not empty. 

C++
#include <iostream> #include <stack> #include <vector> using namespace std;  struct Node {     int data;     Node *left, *right;      Node(int data)     {         this->data = data;         this->left = this->right = nullptr;     } };  vector<int> preOrder(Node* root) {     vector<int> res;     if (root == NULL)         return res;      stack<Node*> s;     Node* curr = root;      while (!s.empty() || curr != NULL) {         while (curr != NULL) {             res.push_back(curr->data);             if (curr->right)                 s.push(curr->right);             curr = curr->left;         }          if (!s.empty()) {             curr = s.top();             s.pop();         }     }      return res; }  int main() {     Node* root = new Node(1);     root->left = new Node(2);     root->right = new Node(3);     root->left->left = new Node(4);     root->left->right = new Node(5);      vector<int> res = preOrder(root);      for (int x : res) {         cout << x << " ";     }     cout << endl;      return 0; } 
Java
import java.util.ArrayList; import java.util.List; import java.util.Stack;  class Node {     int data;     Node left, right;      Node(int data) {         this.data = data;         this.left = this.right = null;     } }  public class GfG {     static List<Integer> preOrder(Node root) {         List<Integer> res = new ArrayList<>();         if (root == null) return res;          Stack<Node> s = new Stack<>();         Node curr = root;          while (!s.isEmpty() || curr != null) {             while (curr != null) {                 res.add(curr.data);                 if (curr.right != null) s.push(curr.right);                 curr = curr.left;             }              if (!s.isEmpty()) {                 curr = s.pop();             }         }          return res;     }      public static void main(String[] args) {         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);          List<Integer> res = preOrder(root);          for (int x : res) {             System.out.print(x + " ");         }         System.out.println();     } } 
Python
class Node:     def __init__(self, data):         self.data = data         self.left = None         self.right = None   def preOrder(root):     res = []     if root is None:         return res      stack = []     curr = root      while stack or curr:         while curr:             res.append(curr.data)             if curr.right:                 stack.append(curr.right)             curr = curr.left          if stack:             curr = stack.pop()      return res   if __name__ == '__main__':     root = Node(1)     root.left = Node(2)     root.right = Node(3)     root.left.left = Node(4)     root.left.right = Node(5)      res = preOrder(root)      print(' '.join(map(str, res))) 
C#
using System; using System.Collections.Generic; using System.Collections;  class Node {     public int data;     public Node left, right;      public Node(int data) {         this.data = data;         this.left = this.right = null;     } }  public class GfG {     static List<int> PreOrder(Node root) {         List<int> res = new List<int>();         if (root == null) return res;          Stack<Node> s = new Stack<Node>();         Node curr = root;          while (s.Count > 0 || curr != null) {             while (curr != null) {                 res.Add(curr.data);                 if (curr.right != null) s.Push(curr.right);                 curr = curr.left;             }              if (s.Count > 0) {                 curr = s.Pop();             }         }          return res;     }      public static void Main(string[] args) {         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);          List<int> res = PreOrder(root);          foreach (int x in res) {             Console.Write(x + " ");         }         Console.WriteLine();     } } 
JavaScript
// Node structure class Node {     constructor(data) {         this.data = data;         this.left = null;         this.right = null;     } }  function preOrder(root) {     const res = [];     if (root === null) return res;      const s = [];     let curr = root;      while (s.length > 0 || curr !== null) {         while (curr !== null) {             res.push(curr.data);             if (curr.right) s.push(curr.right);             curr = curr.left;         }          if (s.length > 0) {             curr = s.pop();         }     }      return res; }  // Example usage const root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5);  const res = preOrder(root);  console.log(res.join(' ')); 

Output
1 2 4 5 3 

[Expected Approach] Preorder Morris Traversal – O(n) time and O(1) space

Morris Traversal is a tree traversal technique that allows you to traverse a binary tree without using recursion or a stack. The Preorder Morris Traversal algorithm works by manipulating the tree’s pointers, specifically by utilizing the inorder predecessor of each node.

Algorithm for Preorder Morris Traversal:

1. If the left child of the current node is NULL:

  • Print the current node’s data (since it is the root of the subtree).
  • Move to the right child of the current node.

2. If the left child of the current node is NOT NULL:

  • Find the inorder predecessor of the current node: The inorder predecessor is the rightmost node of the left subtree of the current node.

Two cases arise:

a) The right child of the inorder predecessor already points to the current node:

  • This means we’ve already visited this node, so we can set the right child of the inorder predecessor to NULL.
  • Move to the right child of the current node.

b) The right child of the inorder predecessor is NULL:

  • Set the right child of the inorder predecessor to point to the current node.
  • Print the current node’s data.
  • Move to the left child of the current node (this is the new node to visit next).

3. Repeat the process until the current node is NULL.

C++
#include <iostream> #include <vector> using namespace std;  struct Node {     int data;     Node* left;     Node* right;      Node(int item) {         data = item;         left = right = nullptr;       } };  vector<int> morrisPreOrder(Node* node) {     vector<int> res;      while (node != nullptr) {           if (node->left == nullptr) {               res.push_back(node->data);             node = node->right;         } else {             Node* curr = node->left;             while (curr->right != nullptr && curr->right != node) {                   curr = curr->right;             }              if (curr->right == node) {                 curr->right = nullptr;                   node = node->right;             } else {                 res.push_back(node->data);                 curr->right = node;                 node = node->left;             }         }     }      return res; }  int main() {     Node* root = new Node(1);     root->left = new Node(2);     root->right = new Node(3);     root->left->left = new Node(4);     root->left->right = new Node(5);      vector<int> res = morrisPreOrder(root);      for (int value : res) {         cout << value << " ";     }     cout << endl;      return 0; } 
Java
import java.util.ArrayList; import java.util.List;  class Node {     int data;     Node left, right;      Node(int item) {         data = item;         left = right = null;     } }  public class MorrisPreorder {     public static List<Integer> morrisPreOrder(Node node) {         List<Integer> result = new ArrayList<>();          while (node != null) {             if (node.left == null) {                 result.add(node.data);                 node = node.right;             } else {                 Node current = node.left;                 while (current.right != null && current.right != node) {                     current = current.right;                 }                  if (current.right == node) {                     current.right = null;                     node = node.right;                 } else {                     result.add(node.data);                     current.right = node;                     node = node.left;                 }             }         }          return result;     }          public static void main(String[] args) {         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);          List<Integer> morrisResult = morrisPreOrder(root);          for (int value : morrisResult) {             System.out.print(value + " ");         }         System.out.println();     } } 
Python
class Node:     def __init__(self, item):         self.data = item         self.left = None         self.right = None   def morrisPreorder(node):     result = []     while node:         if node.left is None:             result.append(node.data)             node = node.right         else:             current = node.left             while current.right and current.right != node:                 current = current.right              if current.right == node:                 current.right = None                 node = node.right             else:                 result.append(node.data)                 current.right = node                 node = node.left     return result    if __name__ == '__main__':     root = Node(1)     root.left = Node(2)     root.right = Node(3)     root.left.left = Node(4)     root.left.right = Node(5)      morris_result = morrisPreorder(root)      print(' '.join(map(str, morris_result))) 
C#
using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int item) {         data = item;         left = right = null;     } }  class MorrisPreorder {     public static List<int> MorrisPreOrder(Node node) {         List<int> result = new List<int>();          while (node != null) {             if (node.left == null) {                 result.Add(node.data);                 node = node.right;             } else {                 Node current = node.left;                 while (current.right != null && current.right != node) {                     current = current.right;                 }                  if (current.right == node) {                     current.right = null;                     node = node.right;                 } else {                     result.Add(node.data);                     current.right = node;                     node = node.left;                 }             }         }          return result;     }            public static void Main() {         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);          List<int> morrisResult = MorrisPreOrder(root);          foreach (int value in morrisResult) {             Console.Write(value + " ");         }         Console.WriteLine();              } } 
JavaScript
class Node {     constructor(item) {         this.data = item;         this.left = null;         this.right = null;     } }  function morrisPreOrder(node) {     const result = [];     while (node) {         if (node.left === null) {             result.push(node.data);             node = node.right;         } else {             let current = node.left;             while (current.right !== null && current.right !== node) {                 current = current.right;             }              if (current.right === node) {                 current.right = null;                 node = node.right;             } else {                 result.push(node.data);                 current.right = node;                 node = node.left;             }         }     }     return result; }   const root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5);  const morrisResult = morrisPreOrder(root);  console.log(morrisResult.join(' ')); 

Output
1 2 4 5 3  

Refer Preorder Traversal of Binary Tree for recursive code



Next Article
Iterative Postorder Traversal | Set 1 (Using Two Stacks)
author
kartik
Improve
Article Tags :
  • DSA
  • Tree
Practice Tags :
  • Tree

Similar Reads

  • Binary Tree Data Structure
    A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
    3 min read
  • Introduction to Binary Tree
    Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Representation of Binary TreeEach node in a Binar
    15+ min read
  • Properties of Binary Tree
    This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levels Note: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A binary tree can have at most
    4 min read
  • Applications, Advantages and Disadvantages of Binary Tree
    A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
    2 min read
  • Binary Tree (Array implementation)
    Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
    6 min read
  • Maximum Depth of Binary Tree
    Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node. Examples: Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which h
    11 min read
  • Insertion in a Binary Tree in level order
    Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner. Examples: Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner. Approach:
    8 min read
  • Deletion in a Binary Tree
    Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
    12 min read
  • Enumeration of Binary Trees
    A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
    3 min read
  • Types of Binary Tree

    • Types of Binary Tree
      We have discussed Introduction to Binary Tree in set 1 and the Properties of Binary Tree in Set 2. In this post, common types of Binary Trees are discussed. Types of Binary Tree based on the number of children:Following are the types of Binary Tree based on the number of children: Full Binary TreeDe
      7 min read

    • Complete Binary Tree
      We know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t
      7 min read

    • Perfect Binary Tree
      What is a Perfect Binary Tree? A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled w
      4 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences