Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Data Science
  • Data Science Projects
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • ML Projects
  • Deep Learning
  • NLP
  • Computer Vision
  • Artificial Intelligence
Open In App
Next Article:
Components of Time Series Data
Next article icon

Introduction to Concept Drift

Last Updated : 02 Sep, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

If we place ourselves in a frame that differs slightly from what we usually see. For instance: when we do batch learning, i.e. learning on a fixed set of data that generates a given model, algorithms can quickly become ineffective or even counterproductive. This problem could occur because of the modification of data or the occurrence of new data constantly. This problem is known as concept drift.

A formal definition:
Concept drift is the event where the statistical properties of the class variable of the data — in other words, the target we want to predict — change over time. When a model is trained, it knows a function that maps the independent variables, or predictors, to the target variables. In other words, predicting the target variable with the help of other independent variables. In a static and perfect environment where none of these predictors nor the target changes or evolves, the model should perform as it did on day one because there’s no change. But if the predictors are changed with time, the model might change the performance, as it was trained with old data, and predicting from new data might be tough for the model because of the evolution of the predictors.
An example of such a situation is Dynamic Data (For Instance: Streaming Data), where not only do the statistical properties of the target variable change but so does its meaning. When this change happens, the mapping found by the function is no longer suitable for the new environment.

In Machine Learning and Predictive analytics, the concept drift means the statistical properties of the target variable of the data, of which the model is trying to predict, changes over time in very unpredicted ways. This leads to problems because as time passes, the predictions become less accurate. Hence of little or no use.

Let’s illustrate an example of a sensor positioned on a volcano in order to collect the temperature of the latter over time. Suppose that we collect data over several days during which it only rained. Learning about these data would allow us to obtain the following model (figure below): beyond a certain threshold, we consider that the volcano is active and if not, it is at rest.

Figure 1: Data during Rain

However, a few days later, a heatwave arrives and the temperature distribution is found changed as below (Figure 2). We can easily see that the model established earlier is no longer valid, you have to adapt it.

Figure 2: Data After Rain

We can also see the concept of concept-drift in shopping during Diwali in India. During normal days shopping goes very normally but suddenly during the time of Diwali, the shopping hikes very sudden. Below are the few statistics that are taken from here.

Figure 2: Data After Rain



Next Article
Components of Time Series Data
author
ayushsaxena77
Improve
Article Tags :
  • AI-ML-DS
  • Machine Learning
  • data mining
  • python
Practice Tags :
  • Machine Learning
  • python

Similar Reads

  • K means Clustering - Introduction
    K-Means Clustering is an Unsupervised Machine Learning algorithm which groups the unlabeled dataset into different clusters. The article aims to explore the fundamentals and working of k means clustering along with its implementation. Understanding K-means ClusteringK-means clustering is a technique
    6 min read
  • Data Science 101: An Easy Introduction
    Welcome to "Data Science 101: An Easy Introduction," your starting point for understanding the exciting field of data science. In today's world, turning lots of raw data into useful insights is incredibly valuable. Whether you're a student, working professional, or just curious, this guide will help
    5 min read
  • Inductive Reasoning in AI
    Inductive reasoning, a fundamental aspect of human logic and reasoning, plays a pivotal role in the realm of artificial intelligence (AI). This cognitive process involves making generalizations from specific observations, which AI systems mimic to improve decision-making and predict outcomes. This a
    7 min read
  • Components of Time Series Data
    Time series data, which consists of observations recorded over time at regular intervals, can be analyzed by breaking it down into four primary components. These components help identify patterns, trends, and irregularities in the data. It's often shown as a line graph to easily see patterns over ti
    10 min read
  • Conceptual Dependency (CD) Theory in Artificial Intelligence
    Conceptual Dependency (CD) theory in Artificial Intelligence (AI), developed by Roger Schank in 1969, aims to enable machines to understand human language. It focuses on representing the meaning of sentences in a way that transcends specific words or languages, allowing AI systems to grasp the core
    5 min read
  • Data Transformation in Data Mining
    Data transformation in data mining refers to the process of converting raw data into a format that is suitable for analysis and modeling. It also ensures that data is free of errors and inconsistencies. The goal of data transformation is to prepare the data for data mining so that it can be used to
    4 min read
  • Data Scientist Roadmap - A Complete Guide [2025]
    Welcome to your comprehensive Data Science Roadmap! If you’ve ever wondered, about “Steps or Path to Become a Data Scientist”, you’re in the right place. This guide is perfect for Data Science for Beginners and seasoned professionals alike, covering everything from mastering Python for Data Science
    8 min read
  • What is Gradient descent?
    Gradient Descent is a fundamental algorithm in machine learning and optimization. It is used for tasks like training neural networks, fitting regression lines, and minimizing cost functions in models. In this article we will understand what gradient descent is, how it works , mathematics behind it a
    8 min read
  • Agent-Environment Interface in AI
    The agent-environment interface is a fundamental concept of reinforcement learning. It encapsulates the continuous interaction between an autonomous agent and its surrounding environment that forms the basis of how the agents learn from and adapt to their experiences to achieve specific goals. This
    13 min read
  • Bass Diffusion Model
    The "Bass Diffusion Model," or BASS Model for short, is a mathematical model that is used to examine and forecast how new ideas and goods will be adopted and spread within a market or community. The foundation of Frank Bass's 1969 model is the idea that consumers can be divided into two groups: inno
    13 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences