Insertion at Specific Position in a Circular Doubly Linked List
Last Updated : 02 May, 2025
Prerequisite:
Given the start pointer pointing to the start of a Circular Doubly Linked List, an element and a position. The task is to insert the element at the specified position in the given Circular Doubly Linked List.

The idea is to count the total number of elements in the list. Check whether the specified location is valid or not, i.e. location is within the count.
If location is valid:
- Create a newNode in the memory.
- Traverse in the list using a temporary pointer(temp) till the node just before the given position at which a new node is needed to be inserted.
- Insert the new node by performing below operations:
- Assign newNode->next = temp->next
- Assign newNode->prev as temp->next
- Assign temp->next as newNode
- Assign (temp->next)->prev as newNode->next
Below is the implementation of the above idea:
C++ // CPP program to convert insert an element at a specific // position in a circular doubly linked list #include <bits/stdc++.h> using namespace std; // Doubly linked list node struct node { int data; struct node* next; struct node* prev; }; // Utility function to create a node in memory struct node* getNode() { return ((struct node*)malloc(sizeof(struct node))); } // Function to display the list int displayList(struct node* temp) { struct node* t = temp; if (temp == NULL) return 0; else { cout << "The list is: "; while (temp->next != t) { cout << temp->data << " "; temp = temp->next; } cout << temp->data << endl; return 1; } } // Function to count number of // elements in the list int countList(struct node* start) { // Declare temp pointer to // traverse the list struct node* temp = start; // Variable to store the count int count = 0; // Iterate the list and increment the count while (temp->next != start) { temp = temp->next; count++; } // As the list is circular, increment the // counter at last count++; return count; } // Function to insert a node at a given position // in the circular doubly linked list bool insertAtLocation(struct node* start, int data, int loc) { // Declare two pointers struct node *temp, *newNode; int i, count; // Create a new node in memory newNode = getNode(); // Point temp to start temp = start; // count of total elements in the list count = countList(start); // If list is empty or the position is // not valid, return false if (temp == NULL || count < loc) return false; else { // Assign the data newNode->data = data; // Iterate till the loc for (i = 1; i < loc - 1; i++) { temp = temp->next; } // See in Image, circle 1 newNode->next = temp->next; // See in Image, Circle 2 (temp->next)->prev = newNode; // See in Image, Circle 3 temp->next = newNode; // See in Image, Circle 4 newNode->prev = temp; return true; } return false; } // Function to create circular doubly linked list // from array elements void createList(int arr[], int n, struct node** start) { // Declare newNode and temporary pointer struct node *newNode, *temp; int i; // Iterate the loop until array length for (i = 0; i < n; i++) { // Create new node newNode = getNode(); // Assign the array data newNode->data = arr[i]; // If it is first element // Put that node prev and next as start // as it is circular if (i == 0) { *start = newNode; newNode->prev = *start; newNode->next = *start; } else { // Find the last node temp = (*start)->prev; // Add the last node to make them // in circular fashion temp->next = newNode; newNode->next = *start; newNode->prev = temp; temp = *start; temp->prev = newNode; } } } // Driver Code int main() { // Array elements to create // circular doubly linked list int arr[] = { 1, 2, 3, 4, 5, 6 }; int n = sizeof(arr) / sizeof(arr[0]); // Start Pointer struct node* start = NULL; // Create the List createList(arr, n, &start); // Display the list before insertion displayList(start); // Inserting 8 at 3rd position insertAtLocation(start, 8, 3); // Display the list after insertion displayList(start); return 0; }
Java // Doubly linked list node class node { int data; node next; node prev; node(int value){ data=value; next=null; prev=null; } }; // Java program to convert insert // an element at a specific position // in a circular doubly linked listing, // end and middle class GFG { static node head=null; // Function to display the list static int displayList() { node temp = head; if (temp == null) return 0; else { System.out.println( "The list is: "); while (temp.next != head) { System.out.print( temp.data + " "); temp = temp.next; } System.out.println( temp.data ); return 1; } } // Function to count number of // elements in the list static int countList() { // Declare temp pointer to // traverse the list node temp = head; // Variable to store the count int count = 0; // Iterate the list and // increment the count while (temp.next != head) { temp = temp.next; count++; } // As the list is circular, increment // the counter at last count++; return count; } // Function to insert a node at // a given position in the // circular doubly linked list static void insertAtLocation(int data, int loc) { // Declare two pointers node temp=head; int i, count; // count of total elements in the list count = countList(); // If list is empty or the position is // not valid, return false if (temp == null || count < loc) return; else { // Create a new node in memory node newNode = new node(data); // Iterate till the loc for (i = 1; i < loc - 1; i++) { temp = temp.next; } // See in Image, circle 1 newNode.next = temp.next; // See in Image, Circle 2 temp.next.prev = newNode; // See in Image, Circle 3 temp.next = newNode; // See in Image, Circle 4 newNode.prev = temp; } } // Function to create circular doubly // linked list from array elements static void createList(int arr[], int n) { // Declare newNode and temporary pointer node temp=head; int i; // Iterate the loop until array length for (i = 0; i < n; i++) { // Create new node node newNode =new node(arr[i]); // If it is first element if (i == 0) { head = newNode; temp=newNode; } else { // Add the last node to make them // in circular fashion temp.next = newNode; newNode.next = head; newNode.prev = temp; temp = newNode; } } } // Driver Code public static void main(String args[]) { // Array elements to create // circular doubly linked list int arr[] = { 1, 2, 3, 4, 5, 6 }; int n = arr.length; // Create the List createList(arr, n); // Display the list before insertion displayList(); // Inserting 8 at 3rd position insertAtLocation(8, 3); // Display the list after insertion displayList(); } } // This code is contributed by shubhamrajput6156
Python # Python3 program to insert an element # at a specific position in a # circular doubly linked list # Node of the doubly linked list class Node: def __init__(self, data): self.data = data self.prev = None self.next = None # Utility function to create # a node in memory def getNode(): return (Node(0)) # Function to display the list def displayList(temp): t = temp if (temp == None): return 0 else : print("The list is: ", end = " ") while (temp.next != t): print( temp.data, end = " ") temp = temp.next print(temp.data ) return 1 # Function to count number of # elements in the list def countList( start): # Declare temp pointer to # traverse the list temp = start # Variable to store the count count = 0 # Iterate the list and increment the count while (temp.next != start) : temp = temp.next count = count + 1 # As the list is circular, increment the # counter at last count = count + 1 return count # Function to insert a node at a given position # in the circular doubly linked list def insertAtLocation(start, data, loc): # Declare two pointers temp = None newNode = None i = 0 count = 0 # Create a new node in memory newNode = getNode() # Point temp to start temp = start # count of total elements in the list count = countList(start) # If list is empty or the position is # not valid, return False if (temp == None or count < loc): return start else : # Assign the data newNode.data = data # Iterate till the loc i = 1; while(i < loc - 1) : temp = temp.next i = i + 1 # See in Image, circle 1 newNode.next = temp.next # See in Image, Circle 2 (temp.next).prev = newNode # See in Image, Circle 3 temp.next = newNode # See in Image, Circle 4 newNode.prev = temp return start return start # Function to create circular # doubly linked list from array elements def createList(arr, n, start): # Declare newNode and temporary pointer newNode = None temp = None i = 0 # Iterate the loop until array length while (i < n) : # Create new node newNode = getNode() # Assign the array data newNode.data = arr[i] # If it is first element # Put that node prev and next as start # as it is circular if (i == 0) : start = newNode newNode.prev = start newNode.next = start else : # Find the last node temp = (start).prev # Add the last node to make them # in circular fashion temp.next = newNode newNode.next = start newNode.prev = temp temp = start temp.prev = newNode i = i + 1; return start # Driver Code if __name__ == "__main__": # Array elements to create # circular doubly linked list arr = [ 1, 2, 3, 4, 5, 6] n = len(arr) # Start Pointer start = None # Create the List start = createList(arr, n, start) # Display the list before insertion displayList(start) # Inserting 8 at 3rd position start = insertAtLocation(start, 8, 3) # Display the list after insertion displayList(start) # This code is contributed by Arnab Kundu
C# // C# program to convert insert // an element at a specific position // in a circular doubly linked listing, // end and middle using System; class GFG { // Doubly linked list node public class node { public int data; public node next; public node prev; }; // Utility function to create a node in memory static node getNode() { return new node(); } // Function to display the list static int displayList( node temp) { node t = temp; if (temp == null) return 0; else { Console.WriteLine( "The list is: "); while (temp.next != t) { Console.Write( temp.data + " "); temp = temp.next; } Console.WriteLine( temp.data ); return 1; } } // Function to count number of // elements in the list static int countList( node start) { // Declare temp pointer to // traverse the list node temp = start; // Variable to store the count int count = 0; // Iterate the list and // increment the count while (temp.next != start) { temp = temp.next; count++; } // As the list is circular, increment // the counter at last count++; return count; } // Function to insert a node at // a given position in the // circular doubly linked list static node insertAtLocation( node start, int data, int loc) { // Declare two pointers node temp, newNode; int i, count; // Create a new node in memory newNode = getNode(); // Point temp to start temp = start; // count of total elements in the list count = countList(start); // If list is empty or the position is // not valid, return false if (temp == null || count < loc) return start; else { // Assign the data newNode.data = data; // Iterate till the loc for (i = 1; i < loc - 1; i++) { temp = temp.next; } // See in Image, circle 1 newNode.next = temp.next; // See in Image, Circle 2 (temp.next).prev = newNode; // See in Image, Circle 3 temp.next = newNode; // See in Image, Circle 4 newNode.prev = temp; return start; } } // Function to create circular doubly // linked list from array elements static node createList(int []arr, int n, node start) { // Declare newNode and temporary pointer node newNode, temp; int i; // Iterate the loop until array length for (i = 0; i < n; i++) { // Create new node newNode = getNode(); // Assign the array data newNode.data = arr[i]; // If it is first element // Put that node prev and next as start // as it is circular if (i == 0) { start = newNode; newNode.prev = start; newNode.next = start; } else { // Find the last node temp = (start).prev; // Add the last node to make them // in circular fashion temp.next = newNode; newNode.next = start; newNode.prev = temp; temp = start; temp.prev = newNode; } } return start; } // Driver Code public static void Main() { // Array elements to create // circular doubly linked list int []arr = { 1, 2, 3, 4, 5, 6 }; int n = arr.Length; // Start Pointer node start = null; // Create the List start = createList(arr, n, start); // Display the list before insertion displayList(start); // Inserting 8 at 3rd position start = insertAtLocation(start, 8, 3); // Display the list after insertion displayList(start); } } /* This code contributed by PrinciRaj1992 */
JavaScript <script> // JavaScript program to convert insert // an element at a specific position // in a circular doubly linked listing, // end and middle // Doubly linked list node class node { constructor() { this.data = 0; this.next = null; this.prev = null; } } // Utility function to create a node in memory function getNode() { return new node(); } // Function to display the list function displayList(temp) { var t = temp; if (temp == null) return 0; else { document.write("The list is: "); while (temp.next != t) { document.write(temp.data + " "); temp = temp.next; } document.write(temp.data + "<br>"); return 1; } } // Function to count number of // elements in the list function countList(start) { // Declare temp pointer to // traverse the list var temp = start; // Variable to store the count var count = 0; // Iterate the list and // increment the count while (temp.next != start) { temp = temp.next; count++; } // As the list is circular, increment // the counter at last count++; return count; } // Function to insert a node at // a given position in the // circular doubly linked list function insertAtLocation(start, data, loc) { // Declare two pointers var temp, newNode; var i, count; // Create a new node in memory newNode = getNode(); // Point temp to start temp = start; // count of total elements in the list count = countList(start); // If list is empty or the position is // not valid, return false if (temp == null || count < loc) return start; else { // Assign the data newNode.data = data; // Iterate till the loc for (i = 1; i < loc - 1; i++) { temp = temp.next; } // See in Image, circle 1 newNode.next = temp.next; // See in Image, Circle 2 temp.next.prev = newNode; // See in Image, Circle 3 temp.next = newNode; // See in Image, Circle 4 newNode.prev = temp; return start; } } // Function to create circular doubly // linked list from array elements function createList(arr, n, start) { // Declare newNode and temporary pointer var newNode, temp; var i; // Iterate the loop until array length for (i = 0; i < n; i++) { // Create new node newNode = getNode(); // Assign the array data newNode.data = arr[i]; // If it is first element // Put that node prev and next as start // as it is circular if (i == 0) { start = newNode; newNode.prev = start; newNode.next = start; } else { // Find the last node temp = start.prev; // Add the last node to make them // in circular fashion temp.next = newNode; newNode.next = start; newNode.prev = temp; temp = start; temp.prev = newNode; } } return start; } // Driver Code // Array elements to create // circular doubly linked list var arr = [1, 2, 3, 4, 5, 6]; var n = arr.length; // Start Pointer var start = null; // Create the List start = createList(arr, n, start); // Display the list before insertion displayList(start); // Inserting 8 at 3rd position start = insertAtLocation(start, 8, 3); // Display the list after insertion displayList(start); // This code is contributed by rdtank. </script>
OutputThe list is: 1 2 3 4 5 6 The list is: 1 2 8 3 4 5 6
complexities Analysis:
- Time Complexity:O(n) => for counting the list as we are using a loop to traverse linearly, O(n) => Inserting the elements, as we are using a loop to traverse linearly. So, total complexity is O(n + n) = O(n). Where n is the number of nodes in the linked list.
- Auxiliary Space: O(1), as we are not using any extra space.
New Approach:- Here’s an alternative approach to inserting an element at a specific position in a circular doubly linked list.
Algorithm :
1. Define the structure for a doubly linked list node (`Node`) with data, `next` pointer, and `prev` pointer.
2. Create a function `getNode` that allocates memory for a new node, initializes its data and pointers, and returns the new node.
3. Create a function `displayList` to print the elements of the circular doubly linked list. It traverses the list starting from the `start` node and prints the data of each node until it reaches the `start` node again.
4. Create a function `countList` to count the number of elements in the circular doubly linked list. It starts from the `start` node and increments a counter while traversing the list until it reaches the `start` node again. The final count is returned.
5. Create a function `insertAtLocation` to insert a new node at a given position in the circular doubly linked list. It takes the address of the `start` pointer, the data to be inserted, and the desired position as input.
6. First, count the number of elements in the list using the `countList` function. If the specified position is less than 1 or greater than the count plus one, return false to indicate an invalid position.
7. Create a new node using `getNode` function and assign the input data to it.
8. If the list is empty (start pointer is NULL), make the new node the start node by pointing its `next` and `prev` pointers to itself.
9. If the desired position is 1, insert the new node at the beginning of the list. Update the pointers of the new node, the previous start node, and the last node in the list to maintain the circular doubly linked structure.
10. If the desired position is other than 1, traverse the list until the node just before the desired position. Update the pointers of the new node, the current node, and the next node to insert the new node at the desired position.
11. Finally, return true to indicate successful insertion.
12. In the `main` function, create the circular doubly linked list by inserting elements from the given array using the `insertAtLocation` function.
13. Display the list before insertion.
14. Insert a new node with data 8 at the 3rd position using the `insertAtLocation` function.
15. Display the list after insertion.
16. The program ends.
Below is the implementation of the above idea:
C++ #include <bits/stdc++.h> using namespace std; // Doubly linked list node struct Node { int data; struct Node* next; struct Node* prev; }; // Function to create a new node struct Node* getNode(int data) { struct Node* newNode = new Node; newNode->data = data; newNode->prev = NULL; newNode->next = NULL; return newNode; } // Function to display the list void displayList(struct Node* start) { if (start == NULL) { cout << "The list is empty." << endl; return; } cout << "The list is: "; struct Node* temp = start; do { cout << temp->data << " "; temp = temp->next; } while (temp != start); cout << endl; } // Function to count the number of elements in the list int countList(struct Node* start) { if (start == NULL) return 0; int count = 0; struct Node* temp = start; do { count++; temp = temp->next; } while (temp != start); return count; } // Function to insert a node at a given position bool insertAtLocation(struct Node** start, int data, int loc) { int count = countList(*start); if (loc < 1 || loc > count + 1) return false; struct Node* newNode = getNode(data); // If the list is empty if (*start == NULL) { *start = newNode; newNode->next = newNode; newNode->prev = newNode; } // If the node is to be inserted at the beginning else if (loc == 1) { newNode->next = *start; newNode->prev = (*start)->prev; (*start)->prev->next = newNode; (*start)->prev = newNode; *start = newNode; } else { struct Node* temp = *start; int currPos = 1; // Traverse to the node before the desired position while (currPos < loc - 1) { temp = temp->next; currPos++; } // Insert the new node newNode->next = temp->next; newNode->prev = temp; temp->next->prev = newNode; temp->next = newNode; } return true; } // Driver Code int main() { // Array elements to create // circular doubly linked list int arr[] = { 1, 2, 3, 4, 5, 6 }; int n = sizeof(arr) / sizeof(arr[0]); // Start Pointer struct Node* start = NULL; // Create the List for (int i = 0; i < n; i++) insertAtLocation(&start, arr[i], i + 1); // Display the list before insertion displayList(start); // Inserting 8 at 3rd position insertAtLocation(&start, 8, 3); // Display the list after insertion displayList(start); return 0; }
Java // Java code implementation import java.io.*; // creating the node class Node { int data; Node next; Node prev; public Node(int data) { this.data = data; this.next = null; this.prev = null; } } public class CircularDoublyLinkedList { // Function to display the list static void displayList(Node start) { if (start == null) { System.out.println("The list is empty."); return; } System.out.print("The list is: "); Node temp = start; do { System.out.print(temp.data + " "); temp = temp.next; } while (temp != start); System.out.println(); } // Function to count the number of elements in the list static int countList(Node start) { if (start == null) return 0; int count = 0; Node temp = start; do { count++; temp = temp.next; } while (temp != start); return count; } // Function to insert a node at a given position static boolean insertAtLocation(Node[] start, int data, int loc) { int count = countList(start[0]); if (loc < 1 || loc > count + 1) return false; Node newNode = new Node(data); // If the list is empty if (start[0] == null) { start[0] = newNode; newNode.next = newNode; newNode.prev = newNode; } // If the node is to be inserted at the beginning else if (loc == 1) { newNode.next = start[0]; newNode.prev = start[0].prev; start[0].prev.next = newNode; start[0].prev = newNode; start[0] = newNode; } else { Node temp = start[0]; int currPos = 1; // Traverse to the node before the desired position while (currPos < loc - 1) { temp = temp.next; currPos++; } // Insert the new node newNode.next = temp.next; newNode.prev = temp; temp.next.prev = newNode; temp.next = newNode; } return true; } public static void main(String[] args) { // Array elements to create circular doubly linked list int[] arr = { 1, 2, 3, 4, 5, 6 }; int n = arr.length; // Start Pointer Node[] start = new Node[1]; start[0] = null; // Create the List for (int i = 0; i < n; i++) insertAtLocation(start, arr[i], i + 1); // Display the list before insertion displayList(start[0]); // Inserting 8 at 3rd position insertAtLocation(start, 8, 3); // Display the list after insertion displayList(start[0]); } }
Python # Doubly linked list node class Node: def __init__(self, data): self.data = data self.next = None self.prev = None # Function to display the list def displayList(start): if start is None: print("The list is empty.") return print("The list is: ", end="") temp = start while True: print(temp.data, end=" ") temp = temp.next if temp == start: # Break the loop if we have traversed the whole list break print() # Function to count the number of elements in the list def countList(start): if start is None: return 0 count = 0 temp = start while True: count += 1 temp = temp.next if temp == start: # Break the loop if we have traversed the whole list break return count # Function to insert a node at a given position def insertAtLocation(start, data, loc): count = countList(start) if loc < 1 or loc > count + 1: return start new_node = Node(data) # If the list is empty if start is None: start = new_node new_node.next = new_node new_node.prev = new_node # If the node is to be inserted at the beginning elif loc == 1: new_node.next = start new_node.prev = start.prev start.prev.next = new_node start.prev = new_node start = new_node else: temp = start curr_pos = 1 # Traverse to the node before the desired position while curr_pos < loc - 1: temp = temp.next curr_pos += 1 # Insert the new node new_node.next = temp.next new_node.prev = temp temp.next.prev = new_node temp.next = new_node return start # Driver Code if __name__ == "__main__": # Array elements to create # circular doubly linked list arr = [1, 2, 3, 4, 5, 6] # Start Pointer start = None # Create the List for i in range(len(arr)): start = insertAtLocation(start, arr[i], i + 1) # Display the list before insertion displayList(start) # Inserting 8 at 3rd position start = insertAtLocation(start, 8, 3) # Display the list after insertion displayList(start)
C# using System; // Doubly linked list node public class Node { public int data; public Node next; public Node prev; } public class CircularDoublyLinkedList { // Function to create a new node public static Node GetNode(int data) { Node newNode = new Node{ data = data, prev = null, next = null }; return newNode; } // Function to display the list public static void DisplayList(Node start) { if (start == null) { Console.WriteLine("The list is empty."); return; } Console.Write("The list is: "); Node temp = start; do { Console.Write(temp.data + " "); temp = temp.next; } while (temp != start); Console.WriteLine(); } // Function to count the number of elements in the list public static int CountList(Node start) { if (start == null) return 0; int count = 0; Node temp = start; do { count++; temp = temp.next; } while (temp != start); return count; } // Function to insert a node at a given position public static bool InsertAtLocation(ref Node start, int data, int loc) { int count = CountList(start); if (loc < 1 || loc > count + 1) return false; Node newNode = GetNode(data); // If the list is empty if (start == null) { start = newNode; newNode.next = newNode; newNode.prev = newNode; } // If the node is to be inserted at the beginning else if (loc == 1) { newNode.next = start; newNode.prev = start.prev; start.prev.next = newNode; start.prev = newNode; start = newNode; } else { Node temp = start; int currPos = 1; // Traverse to the node before the desired // position while (currPos < loc - 1) { temp = temp.next; currPos++; } // Insert the new node newNode.next = temp.next; newNode.prev = temp; temp.next.prev = newNode; temp.next = newNode; } return true; } // Driver Code public static void Main() { // Array elements to create // circular doubly linked list int[] arr = { 1, 2, 3, 4, 5, 6 }; int n = arr.Length; // Start Pointer Node start = null; // Create the List for (int i = 0; i < n; i++) InsertAtLocation(ref start, arr[i], i + 1); // Display the list before insertion DisplayList(start); // Inserting 8 at 3rd position InsertAtLocation(ref start, 8, 3); // Display the list after insertion DisplayList(start); } }
JavaScript // Doubly linked list node class Node { constructor(data) { this.data = data; this.next = null; this.prev = null; } } // Function to display the list function displayList(start) { if (start === null) { console.log("The list is empty."); return; } let temp = start; let listString = "The list is: "; do { listString += temp.data + " "; temp = temp.next; } while (temp !== start); console.log(listString); } // Function to count the number of elements in the list function countList(start) { if (start === null) return 0; let count = 0; let temp = start; do { count++; temp = temp.next; } while (temp !== start); return count; } // Function to insert a node at a given position function insertAtLocation(start, data, loc) { const count = countList(start); if (loc < 1 || loc > count + 1) return false; const newNode = new Node(data); // If the list is empty if (start === null) { start = newNode; newNode.next = newNode; newNode.prev = newNode; return start; // Return the new start } // If the node is to be inserted at the beginning else if (loc === 1) { newNode.next = start; newNode.prev = start.prev; start.prev.next = newNode; start.prev = newNode; start = newNode; return start; // Return the new start } else { let temp = start; let currPos = 1; // Traverse to the node before the desired position while (currPos < loc - 1) { temp = temp.next; currPos++; } // Insert the new node newNode.next = temp.next; newNode.prev = temp; temp.next.prev = newNode; temp.next = newNode; return start; // Return the new start } } // Driver Code function main() { // Array elements to create // circular doubly linked list const arr = [1, 2, 3, 4, 5, 6]; const n = arr.length; // Start Pointer let start = null; // Create the List for (let i = 0; i < n; i++) start = insertAtLocation(start, arr[i], i + 1); // Display the list before insertion displayList(start); // Inserting 8 at 3rd position start = insertAtLocation(start, 8, 3); // Display the list after insertion displayList(start); } // Call the main function main();
Output:-
The list is: 1 2 3 4 5 6
The list is: 1 2 8 3 4 5 6
The time complexity :
1. `getNode` function: O(1) – It takes constant time to create a new node.
2. `displayList` function: O(n) – It traverses the entire circular doubly linked list to display its elements. Since there are n elements in the list, the time complexity is O(n).
3. `countList` function: O(n) – It also traverses the entire circular doubly linked list to count the number of elements. Therefore, the time complexity is O(n).
4. `insertAtLocation` function:
– If the location is valid and not at the beginning: O(loc) – It traverses to the node before the desired position, which takes at most loc-1 iterations.
– If the location is at the beginning: O(1) – It performs constant time operations to insert the new node at the beginning.
– Counting the number of elements in the list: O(n) – It calls the `countList` function, which has a time complexity of O(n).
Overall, the time complexity of the `insertAtLocation` function is O(max(loc, n)) since it depends on the larger value between loc and the number of elements in the list.
5. `main` function:
– Creating the circular doubly linked list: O(n) – It inserts n elements into the list using the `insertAtLocation` function, which has a time complexity of O(max(loc, n)).
– Displaying the list: O(n) – It calls the `displayList` function, which has a time complexity of O(n).
– Inserting 8 at the 3rd position: O(max(loc, n)) – It calls the `insertAtLocation` function, which has a time complexity of O(max(loc, n)).
– Displaying the updated list: O(n) – It calls the `displayList` function, which has a time complexity of O(n).
Therefore, the overall time complexity of the `main` function is O(n + max(loc, n) + n) = O(max(loc, n)).
The auxiliary space complexity :- of the code is O(1) since it uses a fixed amount of additional memory regardless of the input size.
Similar Reads
Insertion at specific position in circular linked list
Inserting an element at a specific position in a circular linked list is a common operation that involves adjusting pointers in a circular structure. Unlike a regular linked list, where the last node points to NULL, a circular linked listâs last node points back to the head, forming a loop. This pro
10 min read
Insert a Node at a specific position in Doubly Linked List
Given a Doubly Linked List, the task is to insert a new node at a specific position in the linked list. Â Examples: Input: Linked List = 1 <-> 2 <-> 4, newData = 3, position = 3Output: Linked List = 1 <-> 2 <-> 3 <-> 4Explanation: New node with data = 3 is inserted at po
13 min read
Insert a node at a specific position in a linked list
Given a singly linked list, a position pos, and data, the task is to insert that data into a linked list at the given position. Examples: Input: 3->5->8->10, data = 2, pos = 2Output: 3->2->5->8->10 Input: 3->5->8->10, data = 11, pos = 5Output: 3->5->8->10->1
8 min read
Insertion in Doubly Circular Linked List
Circular Doubly Linked List has properties of both doubly linked list and circular linked list in which two consecutive elements are linked or connected by the previous and next pointer and the last node points to the first node by the next pointer and also the first node points to the last node by
15+ min read
Deletion at different positions in a Circular Linked List
tGiven a Circular Linked List. The task is to write programs to delete nodes from this list present at: First position.Last Position.At any given position [Tex]i [/Tex].Deleting first node from Singly Circular Linked List Examples: Input : 99->11->22->33->44->55->66 Output : 11-
15+ min read
Insertion at the end in circular linked list
A circular linked list is a data structure where each node points to the next, and the last node connects back to the first, creating a loop. Insertion at the end in circular linked list is an important operation. Understanding how to perform this insertion is essential for effectively manage and us
7 min read
XOR Linked List - Insert an element at a specific position
Given a XOR linked list and two integers position and value, the task is to insert a node containing value as the positionth node of the XOR Linked List. Examples: Input: 4<-->7<-->9<-->7, position = 3, value = 6 Output: 4<-->7<-->6<-->9<-->7Explanation: Ins
15+ min read
Insertion in Circular Singly Linked List
In this article, we will learn how to insert a node into a circular linked list. Insertion is a fundamental operation in linked lists that involves adding a new node to the list. In a circular linked list, the last node connects back to the first node, creating a loop. There are four main ways to ad
12 min read
Insertion in an empty List in the circular linked list
A circular linked list is a type of data structure where each node points to the next one, and the last node connects back to the first, forming a circle. This setup allows you to loop through the list without stopping. Knowing how to insert a node into an empty circular linked list is important in
5 min read
Introduction to Circular Doubly Linked List
A circular doubly linked list is defined as a circular linked list in which each node has two links connecting it to the previous node and the next node. Characteristics of Circular Doubly Linked List :A circular doubly linked list has the following properties: Circular: A circular doubly linked lis
4 min read