Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Physics Class-11th Notes
  • Physics Formulas
  • Physics Symbol
  • Application of Physics
  • Class 8 Science
  • Class 9 Science
  • Class 10 Science
  • Class 11 Science
  • Class 12 Science
  • Class 8 Study Material
  • Class 9 Study Material
  • Class 10 Study Material
  • Class 11 Study Material
  • Class 12 Study Material
Open In App
Next Article:
What is Impulse?
Next article icon

What is Impulse?

Last Updated : 20 Jun, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Impulse in Physics is defined as the force acting on the body for a very shorter period of time. It is the instant change in the momentum of the body. For example, in case of collision, the instant change in the momentum of the body just before and after the collision is called the Impulse acting on the body.

The damage sustained by the body is dependent on the impulse applied to the body. It is denoted using the letter 'J' and is calculated by taking the product of the force applied and the time for which the force is applied.

In this article, we will discuss the concept of Impulse, its formula, equations, and others in detail in this article.

Momentum

Momentum is a physical quantity given by product of the mass of the body and its velocity. It is given as p = mv. Its unit is kgm/s.

Physically momentum means the strength of a moving body that can cause an impact on another body. Furthermore, a stable or motionless object has no or zero motion, this means its momentum is zero and can't impact on another body. Moreover, a huge, slow-moving item has significant momentum, as does a tiny, fast-moving item. A force can influence an object's velocity in either direction. In addition, if the object's velocity varies, the momentum changes as well.

In athletics, the term "momentum" is frequently used. When a pundit states that a player has momentum, it signifies that the person is genuinely moving and that stopping him or her is extremely tough. Because a body with momentum cannot be halted, it is necessary to exert a force against its direction of motion for a certain amount of time. The more momentum there is, the more it is difficult to halt. As a result, a greater amount of power is necessary, as well as a significant length of time to bring the body to a complete stop. The body's velocity varies as force works on it for a specific period of time, and therefore the body's momentum changes.

Momentum Formula

The formula for the momentum of any object is given as:

p = mv

where,
m is the mass of object
p is the momentum
v is the velocity of object.

Furthermore, momentum is a vector that equals the product of the velocity vector and mass. But what is the relationship between impulse and momentum? When a force operates on an item for a brief period of time, the measure of how much the force modifies the item's momentum is called impulse.

Impulse Definition

When a net force acts on a body, it causes acceleration, which changes the body's motion. A larger net force will result in greater acceleration than a small net force. If the big and tiny forces occur at different time periods, the overall change in motion of the item might be the same. The combination of force and time acts as a valuable quantity leading to the definition of impulse.

The product of the average net force acting on an item for a certain period of time is sometimes referred to as the impulse.

Impulse Curve (F vs t)
 

Impulse Formula

Impulse is a vector quantity and the formula for impulse is given using the formula,

J = F × Δt

where,
J is the impulse
Δt is the time interval
F is the force.

It's worth noting that we assume force remains constant throughout time. Like force, the impulse is a vector quantity with a direction.

Impulse-Momentum Theorem

A person must know the mechanics of collisions. The laws of momentum and the first law (known as the change in impulse equation) govern collisions. In a collision, the body is subjected to a force for a specific amount of time, resulting in a change in momentum. The body either slows down, speeds up, or changes direction as a result of a force acting for a certain length of time.

In a collision, the item receives an impulse that is equivalent to a change in momentum. Consider a footballer who is sprinting down the field when he collides with a defensive back. The halfback's pace and momentum change as a result of the contact.

The impulse-Momentum theorem aids in the understanding of these two concepts. The theorem simply asserts that the change in an object's momentum is proportional to the amount of impulse applied to it.

The alternate formula of impulse is given as:

J = Δp = pf  −  pi

where,
Δp is the change in momentum
pf is the final momentum
pi is the initial momentum

Since, mass of the object remains constant, it can also be given as:

J = m × (vf − vi)

where,
m is mass of the object
vf is the final velocity
vi is the initial velocity

Most importantly, the formula correlates impulse to the object's change in momentum. In addition, impulse can be measured in kilogram meters per second (kg m/s) or Newton times seconds (Ns).

How to Calculate Impulse?

The impulse acting on any object is calculated using the Impule formula as discussed above. Follow the following steps to calculate the Impulse acting on the object.

Step 1: Note the Momentum of the object just before the collision, and the momentum of the object just after the collision.

Step 2: Find the change in momentum of the object by taking the difference between the final momentum and the initial momentum.

Step 3: Use the Impulse formula

(Impulse) J = Δp(change in momentum)

Step 4: Simplify the value obtained in step 3 to get the final answer.

Example: A kicks a ball rolling at 6 m/s after the kick the ball attains a velocity of 36 m/s. Find the impulse applied to the ball if the mass of the ball is 1/2 kg.

Solution:

We know that the Impulse formula is,

J = Δp

Given,
mass of ball (m) = 1/2 kg
Initial velocity of Ball (vi) = 6 m/s
Final velocity of Ball (vi) = 36 m/s

Initial Momentum = mvi = 1/2×6 = 3 kgm/s

Final Momentum = mvf = 1/2×36 = 18 kgm/s

Impulse (J) = mvf - mvi  = 18 - 3 = 15 kgm/s

Thus, the Impulse applied to the ball is 15 kgm/s

Newton’s Second Law

The relationship between Impulse and Newton's Law of Motion is very crucial. Newton's second law is very useful for finding the value of the Impulse.

We know that force acting on an object is given using,

F = ma

We know that acceleration (a = △v/△t)

F = m(△v/△t)

F△t = m△v

F△t = m(vf − vi)

where the quantity F△t implies that Impulse acting on the body and it is given as the change in linear momentum of the body.

This concept can be explained using the case of collision. In case of a collision large force is applied to a body if we reduce the time for the impact of the collision the impulse acting on the body is reduced drastically and thus the impact of the collision is lower.

Learn more about Newton’s Second Law of Motion

Impulse Examples

A few examples of impulse are given below,

  • When someone falls from a bed onto a floor, they sustain more damage than if they fall onto a heap of sand. This occurs because the sand yields more than the cemented floor, increasing the contact time and reducing the force effect.
  • For the same reason, nylon ropes are utilized in the sport of rock climbing. Climbers use nylon ropes to secure themselves to the rock faces. A rock climber will start to tumble if she loses her grasp on the rock. In this case, her speed will be eventually slowed by the rope, averting a dangerous fall to the ground below.
  • Hitters are frequently instructed to follow through while striking a ball in racket and bat sports. High-speed videos of the collisions between bats/rackets and balls have indicated that the act of following through serves to lengthen the duration over which a collision occurs. In the impulse-momentum change theorem, this increase in time must result in a change in another variable.

Read More

  • Inertia
  • Equation of Motion
  • Work Energy Theorem

Solved Examples on Impulse

Example 1: An item comes to a halt when it collides with a solid wall. Calculate the object's impulse if the object was 2.0 kg in weight and travelled at a speed of 10 m/s before colliding with the wall.

Solution:

Given,

Mass of the object, m = 2.0 kg

Initial velocity of the ball, vi = 10 m/s

Final velocity of the ball, vf = 0 m/s

The formula for impulse is:

J = m × (vf − vi)

Substitute all the values in the above equation.

J = 2 × (0 - 10) kg m/s

 = -20 kg m/s

Hence, the impulse on the object is -20 kg m/s.

Example 2: A golfer hits a ball of mass 100 g at a speed of 50 m/s. The golf club is in contact with the ball for 2 ms. Compute the average force applied by the club on the ball.

Solution:

Given,

Change in the velocity, Δv = 50 m/s

Mass of the ball, m = 100 g = 0.1 kg

Time of contact, t = 2 ms = 0.002 s

The formula of impulse is:

J = F × Δt = m × Δv

F = m × Δv / Δt

Substitute all the values in the above equation.

F = (0.1) × (50) / 0.002 N

   = 2500 N

Hence, the average force applied on the ball is 2500 N.

Example 3: Calculate the impulse on a body hit by a force of 500 N with a time of contact equal to 0.1s.

Solution:

Given,

Force exerted on body, F = 500 N

Time of contact, Δt = 0.1 s

Formula for impulse is,

J = F × Δt

  =(500) × (0.1) N s

  = 50 N s

Hence, the impulse on body is 50 N s.


Next Article
What is Impulse?

A

anurag652
Improve
Article Tags :
  • School Learning
  • Physics
  • Class 11
  • Physics-MAQ
  • Physics-Formulas
  • Physics-Calculators
  • Physics-Class-11
  • Mechanics

Similar Reads

    Impulse Noise
    The term noise usually describes undesirable disturbances or fluctuations and is considered to be the worst case for communication and error-free information transmission and processing in engineering. The noises you hear throughout the day can be either continuous noise, intermittent noise, impulsi
    6 min read
    What is Motion?
    Motion is defined as the change in the position of an object with respect to time i.e. when an object changes its position according to time it is said to be in the state of motion. Everything in the universe is in a state of continuous motion, for example, the moon revolves around the planets, the
    12 min read
    What is Fitts’ Law?
    Fitts' Law is a fundamental principle in user experience (UX) and human-computer interaction (HCI) design. It predicts how long it takes for a user to move to and select a target, such as a button or link, based on the target's size and distance. Understanding Fitts' Law helps designers create more
    7 min read
    What is Velocity?
    Velocity is an essential concept in physics, which measures the rate of change of an object's position with respect to time. When the speed of an object is measured in a specific direction, then it is termed Velocity. Also, the time-rate change of displacement is known as velocity. Both speed and ve
    12 min read
    what is a spike in agile?
    Have you ever tried rock climbing, if yes must have used spike to explore the path. Spike is a stick used by mountaineers to check if the rock above is strong enough to hold their weight. Agile uses the terminology of spike to deep dive into the problem and investigate possible paths to solution.Agi
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences