Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Stack
  • Practice Stack
  • MCQs on Stack
  • Stack Tutorial
  • Stack Operations
  • Stack Implementations
  • Monotonic Stack
  • Infix to Postfix
  • Prefix to Postfix
  • Prefix to Infix
  • Advantages & Disadvantages
Open In App
Next Article:
Implement a stack using singly linked list
Next article icon

Implementation of stack using Doubly Linked List

Last Updated : 23 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Stack and doubly linked lists are two important data structures with their own benefits. Stack is a data structure that follows the LIFO (Last In First Out) order and can be implemented using arrays or linked list data structures. Doubly linked list has the advantage that it can also traverse the previous node with the help of “previous” pointer.

Structure of Doubly Linked List

C++
// Declaration of Doubly Linked List class Node { public:     int data;     Node* next;     Node* prev;     Node(int val) {         data = val;         next = nullptr;         prev = nullptr;     } }; 
Java
// Declaration of Doubly Linked List class Node {     public int data;     public Node next;     public Node prev;      public Node(int val) {         data = val;         next = null;         prev = null;     } } 
Python
# Declaration of Doubly Linked List class Node:     def __init__(self, val):         self.data = val         self.next = None         self.prev = None 
C#
// Declaration of Doubly Linked List class Node {     public int data;     public Node next;     public Node prev;      public Node(int val) {         data = val;         next = null;         prev = null;     } } 
JavaScript
// Declaration of Doubly Linked List class Node {     constructor(val) {         this.data = val;         this.next = null;         this.prev = null;     } } 

Stack Functions to be Implemented

Push()

  • If the stack is empty:
    • Create a new node and assign the given data to it.
    • Set both the “previous” and “next” pointers of the node to null as it is the first node in the doubly linked list (DLL).
    • Assign both “top” and “start” to this new node.
  • Otherwise:
    • Create a new node and assign the given data to it.
    • Set the “previous” pointer of the new node to the current “top” node.
    • Set the “next” pointer of the new node to null.
    • Update the “top” pointer to the new node, as it is now the top element of the stack.

Below is given the implementation:

C++
void push(int val) {     Node* h = new Node(val);      // If stack is empty     // then make the new node as top     if (isEmpty()) {         h->prev = NULL;         h->next = NULL;          // As it is first node         // so it is also top and start         start = h;         top = h;     }     else {         top->next = h;         h->next = NULL;         h->prev = top;         top = h;     } } 
Java
void push(int d) {     Node n = new Node();     n.data = d;     if (n.isEmpty()) {         n.prev = null;         n.next = null;          // As it is first node         // if stack is empty         start = n;         top = n;     }     else {         top.next = n;         n.next = null;         n.prev = top;         top = n;     } } 
Python
def push(self,element):   newP = node(element)   if self.start == None:      self.start = self.top = newP     return   newP.prev = self.top   self.top.next = newP   self.top = newP 
C#
public void Push(int d) {     Node n = new Node();     n.data = d;     if (n.isEmpty())     {         n.prev = null;         n.next = null;          // As it is first node         // if stack is empty         start = n;         top = n;     }     else     {         top.next = n;         n.next = null;         n.prev = top;         top = n;     } } 
JavaScript
function push(d) {     var n = new Node();     n.data = d;     if (isEmpty()) {     n.prev = null;     n.next = null;     start = n;     top = n; }  else {     top.next = n;     n.next = null;     n.prev = top;     top = n; } 

Pop()

  • Check if the stack is empty.
    • If it is empty, print a message indicating that the stack is empty.
  • Otherwise:
    • Set top->prev->next to null.
    • Update top to top->prev.

Below is given the implementation:

C++
void pop() {     Node* n;     n = top;     if (isEmpty())         printf("Stack is empty");     else if (top == start) {         top = NULL;         start = NULL;         free(n);     }     else {         top->prev->next = NULL;         top = n->prev;         free(n);     } } 
Java
void pop() {     Node n = top;     if (n.isEmpty())         System.out.println("Stack is empty");     else if (top == start) {         top = null;         start = null;     }     else {         top.prev.next = null;         top = n.prev;     } } 
Python
def pop(self):   if self.isEmpty():     print('List is Empty')     return   self.top =  self.top.prev   if self.top != None: self.top.next = None 
C#
public void pop() {     Node n ;     n = top;     if (n.isEmpty())         Console.Write("Stack is empty");     else if (top == start) {         top = null;         start = null;         n = null;     }     else {         top.prev.next = null;         top = n.prev;         n = null;     } } 
JavaScript
function pop() {     let n;     n = top;     if (isEmpty()) {         console.log("Stack is empty");     }      else if (top === start) {         top = null;         start = null;         free(n);     }      else {         top.prev.next = null;         top = n.prev;         free(n);     } } 

isEmpty()

  • Check the top pointer.
    • If top is null, return true.
    • Otherwise, return false.

Below is given the implementation:

C++
bool isEmpty() {     if (start == nullptr)         return true;     return false; } 
Java
boolean isEmpty() {     if (start ==  null)         return true;     return false; } 
Python
def isEmpty(self):   if self.start:      return False   return True 
C#
public bool IsEmpty() {     if (start == null)     {         return true;     }     return false; } // This code is contributed by akashish__ 
JavaScript
function isEmpty() {     return start == null; } 

printStack()

  • Check if the stack is empty.
    • If it is empty, print “Stack is empty.”
  • Otherwise, start from the start node and traverse the doubly linked list until the end.
    • Print the data of each node while traversing.

Below is given the implementation:

C++
void printStack() {     if (isEmpty())         printf("Stack is empty");     else {         Node* ptr = start;         while (ptr != NULL) {             printf("%d   ", ptr->data);             ptr = ptr->next;         }         printf("\n");     } } 
Java
void printstack() {     if (isEmpty())         System.out.println("Stack is empty");     else {         Node ptr = start;         while (ptr != null) {             System.out.print(ptr.data + " ");             ptr = ptr.next;         }         System.out.println();     } } 
Python
def printstack(self):   if self.isEmpty():     print('List is Empty')     return   curr = self.start   while curr != None:     print(curr.val,end = ' ')     curr = curr.next   print() 
C#
void PrintStack() {     if (IsEmpty())         Console.WriteLine("Stack is empty");     else {         Node ptr = start;         while (ptr != null) {             Console.Write(ptr.data + " ");             ptr = ptr.next;         }         Console.WriteLine();     } }  // This code is contributed by akashish__ 
JavaScript
function printStack() {     if (isEmpty()) {         console.log("Stack is empty");     } else {         let ptr = start;         while (ptr != null) {             console.log(ptr.data + " ");             ptr = ptr.next;         }         console.log("\n");     } } 

stackSize()

  • Check if the stack is empty.
    • If it is empty, return 0.
  • Otherwise, initialize a counter and start from the start node.
    • Traverse the doubly linked list until the end, incrementing the counter for each node.
  • Return the final count.

Below is given the implementation:

C++
void stackSize() {     int c = 0;     if (isEmpty())         printf("Stack is empty");     else {         Node* ptr = start;         while (ptr != NULL) {             c++;             ptr = ptr->next;         }     }     printf("%d \n ", c); } 
Java
void stackSize() {     int c = 0;     if (isEmpty())         System.out.println("Stack is empty");     else {        Node ptr = start;         while (ptr != null) {             c++;             ptr = ptr.next;         }     }     System.out.println(c); } 
Python
def stackSize(self):   curr = self.start   len = 0   while curr != None:     len += 1     curr = curr.next   print(len) 
C#
static void stackSize() {     int c = 0;     if (IsEmpty())         Console.WriteLine("Stack is empty");     else     {         Node ptr = start;         while (ptr != null)         {             c++;             ptr = ptr.next;         }     }     Console.WriteLine("{0}", c); } 
JavaScript
function stackSize() {     let c = 0;     if (isEmpty()) {         console.log("Stack is empty");     } else {         let ptr = start;         while (ptr !== null) {             c++;             ptr = ptr.next;         }     }     console.log(c); } 

topElement()

  • Check if the stack is empty.
    • If it is empty, print that there is no top element.
  • Otherwise, print the data stored in the top node of the stack.

Below is given the implementation:

C++
void topElement() {     if (isEmpty())         printf("Stack is empty");     else         printf(%d", top->data); } 
Java
void topelement() {     if (isEmpty())         System.out.println("Stack is empty");     else         System.out.println(top.data); } 
Python
def topelement(self):     if self.isEmpty():     print("Stack is empty")    else:     print(self.top.val)  
C#
void TopElement() {     if (IsEmpty())         Console.WriteLine("Stack is empty");     else         Console.WriteLine(top.data); } 
JavaScript
function topElement() {     if (isEmpty()) {         console.log("Stack is empty");     } else {         console.log(top.data);     } } 

Implementation of Stack using Doubly Linked List

Implementation of Stack using Doubly Linked List:

Below is given the implementation:

C++
#include <bits/stdc++.h> using namespace std;  // DLL Node structure class Node { public:     int data;     Node* next;     Node* prev;     Node(int d) {         data = d;         next = nullptr;         prev = nullptr;     } };  // Doubly Linked List structure class DLL {     Node* start;     Node* top; public:     DLL() {         start = nullptr;         top = nullptr;     }      // Check if stack is empty     bool isEmpty() {         return start == nullptr;     }      // add element to stack     void push(int val) {         Node* cur = new Node(val);          // if stack is empty,          // set start and top to cur         if (isEmpty()) {             start = cur;             top = cur;         }          // else add cur to the top of stack         else {             top->next = cur;             cur->prev = top;             top = cur;         }     }      // remove top element from stack     void pop() {         Node* cur = top;          // if stack is empty, return         if (isEmpty()) {             cout << "Stack is Empty";             return;         }          // else if there is only one element         else if (top == start) {             top = nullptr;             start = nullptr;             delete cur;         }          // else remove the top element         else {             top->prev->next = nullptr;             top = cur->prev;             delete cur;         }     }      // print the top element     void topElement() {         if (isEmpty())             cout << "Stack is empty";         else             cout << top->data << endl;     }      // find the stack size     void stackSize() {         int cnt = 0;         Node* ptr = start;         while (ptr != nullptr) {             cnt++;             ptr = ptr->next;         }         cout << cnt << endl;     }      // print the stack     void printStack() {         Node* ptr = start;         while (ptr != nullptr) {             cout << ptr->data << " ";             ptr = ptr->next;         }         cout << endl;     } };  int main() {     DLL stack;     stack.push(2);     stack.push(5);     stack.push(10);     stack.printStack();     stack.topElement();     stack.stackSize();     stack.pop();     stack.printStack();     stack.topElement();     stack.stackSize();     return 0; } 
Java
import java.util.*;  class DLL {     Node start;     Node top;      public DLL() {         start = null;         top = null;     }      // Check if stack is empty     public boolean isEmpty() {         return start == null;     }      // add element to stack     public void push(int val) {         Node cur = new Node(val);          // if stack is empty,          // set start and top to cur         if (isEmpty()) {             start = cur;             top = cur;         }          // else add cur to the top of stack         else {             top.next = cur;             cur.prev = top;             top = cur;         }     }      // remove top element from stack     public void pop() {         Node cur = top;          // if stack is empty, return         if (isEmpty()) {             System.out.print("Stack is Empty");             return;         }          // else if there is only one element         else if (top == start) {             top = null;             start = null;             // In Java, garbage collector handles deletion         }          // else remove the top element         else {             top.prev.next = null;             top = cur.prev;             // In Java, garbage collector handles deletion         }     }      // print the top element     public void topElement() {         if (isEmpty())             System.out.print("Stack is empty");         else             System.out.println(top.data);     }      // find the stack size     public void stackSize() {         int cnt = 0;         Node ptr = start;         while (ptr != null) {             cnt++;             ptr = ptr.next;         }         System.out.println(cnt);     }      // print the stack     public void printStack() {         Node ptr = start;         while (ptr != null) {             System.out.print(ptr.data + " ");             ptr = ptr.next;         }         System.out.println();     } }  class Node {     int data;     Node next;     Node prev;      Node(int d) {         data = d;         next = null;         prev = null;     } }  class GfG {     public static void main(String[] args) {         DLL stack = new DLL();         stack.push(2);         stack.push(5);         stack.push(10);         stack.printStack();         stack.topElement();         stack.stackSize();         stack.pop();         stack.printStack();         stack.topElement();         stack.stackSize();     } } 
Python
# DLL Node structure class Node:     def __init__(self, d):         self.data = d         self.next = None         self.prev = None  # Doubly Linked List structure class DLL:     def __init__(self):         self.start = None         self.top = None      # Check if stack is empty     def isEmpty(self):         return self.start is None      # add element to stack     def push(self, val):         cur = Node(val)          # if stack is empty,          # set start and top to cur         if self.isEmpty():             self.start = cur             self.top = cur         # else add cur to the top of stack         else:             self.top.next = cur             cur.prev = self.top             self.top = cur      # remove top element from stack     def pop(self):         cur = self.top          # if stack is empty, return         if self.isEmpty():             print("Stack is Empty", end="")             return         # else if there is only one element         elif self.top == self.start:             self.top = None             self.start = None             del cur         # else remove the top element         else:             self.top.prev.next = None             self.top = cur.prev             del cur      # print the top element     def topElement(self):         if self.isEmpty():             print("Stack is empty", end="")         else:             print(self.top.data)      # find the stack size     def stackSize(self):         cnt = 0         ptr = self.start         while ptr is not None:             cnt += 1             ptr = ptr.next         print(cnt)      # print the stack     def printStack(self):         ptr = self.start         while ptr is not None:             print(ptr.data, end=" ")             ptr = ptr.next         print()  if __name__ == "__main__":     stack = DLL()     stack.push(2)     stack.push(5)     stack.push(10)     stack.printStack()     stack.topElement()     stack.stackSize()     stack.pop()     stack.printStack()     stack.topElement()     stack.stackSize() 
C#
using System; using System.Collections.Generic;  class Node {     public int data;     public Node next;     public Node prev;      public Node(int d) {         data = d;         next = null;         prev = null;     } }  class DLL {     static Node start;     static Node top;      public DLL() {         start = null;         top = null;     }      // Check if stack is empty     public bool isEmpty() {         return start == null;     }      // add element to stack     public void push(int val) {         Node cur = new Node(val);          // if stack is empty,          // set start and top to cur         if (isEmpty()) {             start = cur;             top = cur;         }         // else add cur to the top of stack         else {             top.next = cur;             cur.prev = top;             top = cur;         }     }      // remove top element from stack     public void pop() {         Node cur = top;          // if stack is empty, return         if (isEmpty()) {             Console.Write("Stack is Empty");             return;         }         // else if there is only one element         else if (top == start) {             top = null;             start = null;             // Garbage collector handles deletion         }         // else remove the top element         else {             top.prev.next = null;             top = cur.prev;         }     }      // print the top element     public void topElement() {         if (isEmpty())             Console.Write("Stack is empty");         else             Console.WriteLine(top.data);     }      // find the stack size     public void stackSize() {         int cnt = 0;         Node ptr = start;         while (ptr != null) {             cnt++;             ptr = ptr.next;         }         Console.WriteLine(cnt);     }      // print the stack     public void printStack() {         Node ptr = start;         while (ptr != null) {             Console.Write(ptr.data + " ");             ptr = ptr.next;         }         Console.WriteLine();     } }  class GfG {     public static void Main(string[] args) {         DLL stack = new DLL();         stack.push(2);         stack.push(5);         stack.push(10);         stack.printStack();         stack.topElement();         stack.stackSize();         stack.pop();         stack.printStack();         stack.topElement();         stack.stackSize();     } } 
JavaScript
// Declaration of DLL Node structure class Node {     constructor(d) {         this.data = d;         this.next = null;         this.prev = null;     } }  // Doubly Linked List structure class DLL {     static start = null;     static top = null;      // Check if stack is empty     static isEmpty() {         return DLL.start === null;     }      // add element to stack     static push(val) {         let cur = new Node(val);          // if stack is empty,          // set start and top to cur         if (DLL.isEmpty()) {             DLL.start = cur;             DLL.top = cur;         }         // else add cur to the top of stack         else {             DLL.top.next = cur;             cur.prev = DLL.top;             DLL.top = cur;         }     }      // remove top element from stack     static pop() {         let cur = DLL.top;          // if stack is empty, return         if (DLL.isEmpty()) {             console.log("Stack is Empty");             return;         }         // else if there is only one element         else if (DLL.top === DLL.start) {             DLL.top = null;             DLL.start = null;             // No explicit deletion needed in JavaScript         }         // else remove the top element         else {             DLL.top.prev.next = null;             DLL.top = cur.prev;             // No explicit deletion needed in JavaScript         }     }      // print the top element     static topElement() {         if (DLL.isEmpty())             console.log("Stack is empty");         else             console.log(DLL.top.data);     }      // find the stack size     static stackSize() {         let cnt = 0;         let ptr = DLL.start;         while (ptr !== null) {             cnt++;             ptr = ptr.next;         }         console.log(cnt);     }      // print the stack     static printStack() {         let ptr = DLL.start;         let output = "";         while (ptr !== null) {             output += ptr.data + " ";             ptr = ptr.next;         }         console.log(output);     } }  function main() {     DLL.push(2);     DLL.push(5);     DLL.push(10);     DLL.printStack();     DLL.topElement();     DLL.stackSize();     DLL.pop();     DLL.printStack();     DLL.topElement();     DLL.stackSize(); }  main(); 

Output
2 5 10  10 3 2 5  5 2 

Time complexity:

  • push(): O(1) as we are not traversing the entire list.
  • pop(): O(1) as we are not traversing the entire list.
  • isEmpty(): O(1) as we are checking only the head node.
  • topElement(): O(1) as we are printing the value of the head node only.
  • stackSize(): As we traversed the whole list, it will be O(n), where n is the number of nodes in the linked list.
  • printStack(): As we traversed the whole list, it will be O(n), where n is the number of nodes in the linked list.

Auxiliary Space: O(n), to store the elements in the doubly linked list.



Next Article
Implement a stack using singly linked list

A

aayushi2402
Improve
Article Tags :
  • DSA
  • Linked List
  • Stack
  • doubly linked list
Practice Tags :
  • Linked List
  • Stack

Similar Reads

  • Implementation of Deque using doubly linked list
    A Deque (Double-Ended Queue) is a data structure that allows adding and removing elements from both the front and rear ends. Using a doubly linked list to implement a deque makes these operations very efficient, as each node in the list has pointers to both the previous and next nodes. This means we
    9 min read
  • Operations of Doubly Linked List with Implementation
    A Doubly Linked List (DLL) contains an extra pointer, typically called the previous pointer, together with the next pointer and data which are there in a singly linked list. Below are operations on the given DLL: Add a node at the front of DLL: The new node is always added before the head of the giv
    15+ min read
  • Implement a stack using singly linked list
    To implement a stack using a singly linked list, we need to ensure that all operations follow the LIFO (Last In, First Out) principle. This means that the most recently added element is always the first one to be removed. In this approach, we use a singly linked list, where each node contains data a
    13 min read
  • Implementation of Stack Using Array in C
    A stack is a linear data structure that follows the Last In First Out (LIFO) principle. This means that the most recently added element is the first one to be removed. In this article, we will learn how to implement a stack using an array in C. Implementation of Stack Using Arrays in CIn the array-b
    5 min read
  • Python | Stack using Doubly Linked List
    A stack is a collection of objects that are inserted and removed using Last in First out Principle(LIFO). User can insert elements into the stack, and can only access or remove the recently inserted object on top of the stack. The main advantage of using LinkedList over array for implementing stack
    4 min read
  • Stack Implementation using Deque
    A doubly ended queue or deque allows insertion and deletion at both ends. In a stack, we need to do insertions and deletions at one end only. We can use either end of deque (front or back) to implement a stack, In the below implementation, we use back (or rear) of stack to do both insertions and del
    2 min read
  • Stack Using Linked List in C
    Stack is a linear data structure that follows the Last-In-First-Out (LIFO) order of operations. This means the last element added to the stack will be the first one to be removed. There are different ways using which we can implement stack data structure in C. In this article, we will learn how to i
    7 min read
  • Queue - Linked List Implementation
    In this article, the Linked List implementation of the queue data structure is discussed and implemented. Print '-1' if the queue is empty. Approach: To solve the problem follow the below idea: we maintain two pointers, front and rear. The front points to the first item of the queue and rear points
    8 min read
  • Queue Implementation Using Linked List in Java
    Queue is the linear data structure that follows the First In First Out(FIFO) principle where the elements are added at the one end, called the rear, and removed from the other end, called the front. Using the linked list to implement the queue allows for dynamic memory utilization, avoiding the cons
    4 min read
  • Search an element in a Doubly Linked List
    Given a Doubly linked list(DLL) containing n nodes and an integer x, the task is to find the position of the integer x in the doubly linked list. If no such position found then print -1. Examples: Input: Linked List = 18 <-> 15 <-> 8 <-> 9 <-> 14, x = 8 Output: 3 Explanation:
    7 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences