Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Queue
  • Practice Queue
  • MCQs on Queue
  • Queue Tutorial
  • Operations
  • Applications
  • Implementation
  • Stack vs Queue
  • Types of Queue
  • Circular Queue
  • Deque
  • Priority Queue
  • Stack using Queue
  • Advantages & Disadvantages
Open In App
Next Article:
Huffman Coding using Priority Queue
Next article icon

Huffman Coding | Greedy Algo-3

Last Updated : 22 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Huffman coding is a lossless data compression algorithm. The idea is to assign variable-length codes to input characters, lengths of the assigned codes are based on the frequencies of corresponding characters. 
The variable-length codes assigned to input characters are Prefix Codes, means the codes (bit sequences) are assigned in such a way that the code assigned to one character is not the prefix of code assigned to any other character. This is how Huffman Coding makes sure that there is no ambiguity when decoding the generated bitstream. 
Let us understand prefix codes with a counter example. Let there be four characters a, b, c and d, and their corresponding variable length codes be 00, 01, 0 and 1. This coding leads to ambiguity because code assigned to c is the prefix of codes assigned to a and b. If the compressed bit stream is 0001, the de-compressed output may be “cccd” or “ccb” or “acd” or “ab”.
There are mainly two major parts in Huffman Coding

  1. Build a Huffman Tree from input characters.
  2. Traverse the Huffman Tree and assign codes to characters.

Algorithm:

The method which is used to construct optimal prefix code is called Huffman coding. This algorithm builds a tree in bottom up manner using a priority queue (or heap)

Steps to build Huffman Tree
Input is an array of unique characters along with their frequency of occurrences and output is Huffman Tree. 

  1. Create a leaf node for each unique character and build a min heap of all leaf nodes (Min Heap is used as a priority queue. The value of frequency field is used to compare two nodes in min heap. Initially, the least frequent character is at root)
  2. Extract two nodes with the minimum frequency from the min heap. 
  3. Create a new internal node with a frequency equal to the sum of the two nodes frequencies. Make the first extracted node as its left child and the other extracted node as its right child. Add this node to the min heap.
  4. Repeat steps#2 and #3 until the heap contains only one node. The remaining node is the root node and the tree is complete.
    Let us understand the algorithm with an example:

character Frequency
a 5
b 9
c 12
d 13
e 16
f 45

Step 1. Build a min heap that contains 6 nodes where each node represents root of a tree with single node.
Step 2 Extract two minimum frequency nodes from min heap. Add a new internal node with frequency 5 + 9 = 14. 
 

Illustration of step 2

Illustration of step 2


Now min heap contains 5 nodes where 4 nodes are roots of trees with single element each, and one heap node is root of tree with 3 elements

character Frequency
c 12
d 13
Internal Node 14
e 16
f 45

Step 3: Extract two minimum frequency nodes from heap. Add a new internal node with frequency 12 + 13 = 25
 

Illustration of step 3

Illustration of step 3


Now min heap contains 4 nodes where 2 nodes are roots of trees with single element each, and two heap nodes are root of tree with more than one nodes

character Frequency
Internal Node 14
e 16
Internal Node 25
f 45

Step 4: Extract two minimum frequency nodes. Add a new internal node with frequency 14 + 16 = 30
 

Illustration of step 4

Illustration of step 4


Now min heap contains 3 nodes.

character Frequency
Internal Node 25
Internal Node 30
f 45

Step 5: Extract two minimum frequency nodes. Add a new internal node with frequency 25 + 30 = 55
 

Illustration of step 5

Illustration of step 5


Now min heap contains 2 nodes.

character Frequency
f 45
Internal Node 55

Step 6: Extract two minimum frequency nodes. Add a new internal node with frequency 45 + 55 = 100
 

Illustration of step 6

Illustration of step 6


Now min heap contains only one node.

character Frequency
Internal Node 100

Since the heap contains only one node, the algorithm stops here.

Steps to print codes from Huffman Tree:
Traverse the tree formed starting from the root. Maintain an auxiliary array. While moving to the left child, write 0 to the array. While moving to the right child, write 1 to the array. Print the array when a leaf node is encountered.
 

Steps to print code from HuffmanTree

Steps to print code from HuffmanTree


The codes are as follows:

character code-word
f 0
c 100
d 101
a 1100
b 1101
e 111

Below is the implementation of above approach: 

C++
// C++ code for the above approach: #include <bits/stdc++.h> using namespace std;  // Class to represent huffman tree  class Node { public: 	int data; 	Node *left, *right; 	Node(int x) { 		data = x; 		left = nullptr; 		right = nullptr; 	} };  // Custom min heap for Node class. class Compare { public: 	bool operator() (Node* a, Node* b) { 		return a->data > b->data; 	} };  // Function to traverse tree in preorder  // manner and push the huffman representation  // of each character. void preOrder(Node* root, vector<string> &ans, string curr) { 	if (root == nullptr) return;      // Leaf node represents a character. 	if (root->left == nullptr && root->right==nullptr) { 		ans.push_back(curr); 		return; 	}  	preOrder(root->left, ans, curr + '0'); 	preOrder(root->right, ans, curr + '1'); }  vector<string> huffmanCodes(string s,vector<int> freq) { 	 	int n = s.length();          // Min heap for node class. 	priority_queue<Node*, vector<Node*>, Compare> pq; 	for (int i=0; i<n; i++) { 		Node* tmp = new Node(freq[i]); 		pq.push(tmp); 	}      // Construct huffman tree. 	while (pq.size()>=2) { 	     	    // Left node  		Node* l = pq.top(); 		pq.pop();                  // Right node  		Node* r = pq.top(); 		pq.pop();  		Node* newNode = new Node(l->data + r->data); 		newNode->left = l; 		newNode->right = r;  		pq.push(newNode); 	}  	Node* root = pq.top(); 	vector<string> ans; 	preOrder(root, ans, ""); 	return ans; }  int main() { 	string s = "abcdef"; 	vector<int> freq = {5, 9, 12, 13, 16, 45}; 	vector<string> ans = huffmanCodes(s, freq); 	for (int i=0; i< ans.size(); i++) { 	    cout << ans[i] << " "; 	} 	 	return 0; } 
Java
// Java program for the above approach: import java.util.*;  // Class to represent huffman tree  class Node { 	int data; 	Node left, right; 	Node(int x) { 		data = x; 		left = null; 		right = null; 	} }  class GfG {  	// Function to traverse tree in preorder  	// manner and push the huffman representation  	// of each character. 	static void preOrder(Node root, ArrayList<String> ans, String curr) { 		if (root == null) return;  		// Leaf node represents a character. 		if (root.left == null && root.right == null) { 			ans.add(curr); 			return; 		}  		preOrder(root.left, ans, curr + '0'); 		preOrder(root.right, ans, curr + '1'); 	}  	static ArrayList<String> huffmanCodes(String s, int[] freq) { 		 		int n = s.length(); 		 		// Min heap for node class. 		PriorityQueue<Node> pq = new PriorityQueue<>((a, b) -> { 		    if (a.data < b.data) return -1; 		    return 1; 		}); 		for (int i = 0; i < n; i++) { 			Node tmp = new Node(freq[i]); 			pq.add(tmp); 		}  		// Construct huffman tree. 		while (pq.size() >= 2) {  			// Left node  			Node l = pq.poll();  			// Right node  			Node r = pq.poll();  			Node newNode = new Node(l.data + r.data); 			newNode.left = l; 			newNode.right = r;  			pq.add(newNode); 		}  		Node root = pq.poll(); 		ArrayList<String> ans = new ArrayList<>(); 		preOrder(root, ans, ""); 		return ans; 	}  	public static void main(String[] args) { 		String s = "abcdef"; 		int[] freq = {5, 9, 12, 13, 16, 45}; 		ArrayList<String> ans = huffmanCodes(s, freq); 		for (int i = 0; i < ans.size(); i++) { 			System.out.print(ans.get(i) + " "); 		} 	} } 
Python
# Python program for the above approach: import heapq  # Class to represent huffman tree  class Node: 	def __init__(self, x): 		self.data = x 		self.left = None 		self.right = None  	def __lt__(self, other): 		return self.data < other.data  # Function to traverse tree in preorder  # manner and push the huffman representation  # of each character. def preOrder(root, ans, curr): 	if root is None: 		return  	# Leaf node represents a character. 	if root.left is None and root.right is None: 		ans.append(curr) 		return  	preOrder(root.left, ans, curr + '0') 	preOrder(root.right, ans, curr + '1')  def huffmanCodes(s, freq): 	# Code here 	n = len(s)  	# Min heap for node class. 	pq = [] 	for i in range(n): 		tmp = Node(freq[i]) 		heapq.heappush(pq, tmp)  	# Construct huffman tree. 	while len(pq) >= 2: 		# Left node  		l = heapq.heappop(pq)  		# Right node  		r = heapq.heappop(pq)  		newNode = Node(l.data + r.data) 		newNode.left = l 		newNode.right = r  		heapq.heappush(pq, newNode)  	root = heapq.heappop(pq) 	ans = [] 	preOrder(root, ans, "") 	return ans  if __name__ == "__main__": 	s = "abcdef" 	freq = [5, 9, 12, 13, 16, 45] 	ans = huffmanCodes(s, freq) 	for code in ans: 		print(code, end=" ") 
C#
// C# program for the above approach: using System; using System.Collections.Generic;  // Class to represent huffman tree  class Node { 	public int data; 	public Node left, right; 	public Node(int x) { 		data = x; 		left = null; 		right = null; 	} }  class GfG {  	// Function to traverse tree in preorder  	// manner and push the huffman representation  	// of each character. 	static void preOrder(Node root, List<string> ans, string curr) { 		if (root == null) return;  		// Leaf node represents a character. 		if (root.left == null && root.right == null) { 			ans.Add(curr); 			return; 		}  		preOrder(root.left, ans, curr + "0"); 		preOrder(root.right, ans, curr + "1"); 	}  	static List<string> huffmanCodes(string s, int[] freq) { 		 		int n = s.Length;  		// Min heap for node class. 		PriorityQueue<Node> pq = new PriorityQueue<Node>(new Comparer()); 		for (int i = 0; i < n; i++) { 			Node tmp = new Node(freq[i]); 			pq.Enqueue(tmp); 		}  		// Construct huffman tree. 		while (pq.Count >= 2) {  			// Left node  			Node l = pq.Dequeue();  			// Right node  			Node r = pq.Dequeue();  			Node newNode = new Node(l.data + r.data); 			newNode.left = l; 			newNode.right = r;  			pq.Enqueue(newNode); 		}  		Node root = pq.Dequeue(); 		List<string> ans = new List<string>(); 		preOrder(root, ans, ""); 		return ans; 	}  	static void Main(string[] args) { 		string s = "abcdef"; 		int[] freq = {5, 9, 12, 13, 16, 45}; 		List<string> ans = huffmanCodes(s, freq); 		for (int i = 0; i < ans.Count; i++) { 			Console.Write(ans[i] + " "); 		} 	} }  // Custom comparator class for min heap class Comparer : IComparer<Node> { 	public int Compare(Node a, Node b) { 		if (a.data > b.data) 			return 1; 		else if (a.data < b.data) 			return -1; 		return 0; 	} }  // Custom Priority queue  class PriorityQueue<T> {     private List<T> heap;     private IComparer<T> comparer;      public PriorityQueue(IComparer<T> comparer = null) {         this.heap = new List<T>();         this.comparer = comparer ?? Comparer<T>.Default;     }      public int Count => heap.Count;      // Enqueue operation     public void Enqueue(T item) {         heap.Add(item);         int i = heap.Count - 1;         while (i > 0) {             int parent = (i - 1) / 2;             if (comparer.Compare(heap[parent], heap[i]) <= 0)                 break;             Swap(parent, i);             i = parent;         }     }      // Dequeue operation     public T Dequeue() {         if (heap.Count == 0)             throw new InvalidOperationException("Priority queue is empty.");         T result = heap[0];         int last = heap.Count - 1;         heap[0] = heap[last];         heap.RemoveAt(last);         last--;         int i = 0;         while (true) {             int left = 2 * i + 1;             if (left > last)                 break;             int right = left + 1;             int minChild = left;             if (right <= last && comparer.Compare(heap[right], heap[left]) < 0)                 minChild = right;             if (comparer.Compare(heap[i], heap[minChild]) <= 0)                 break;             Swap(i, minChild);             i = minChild;         }         return result;     }      // Swap two elements in the heap     private void Swap(int i, int j) {         T temp = heap[i];         heap[i] = heap[j];         heap[j] = temp;     } } 
JavaScript
// JavaScript program for the above approach:  class PriorityQueue { 	constructor(compare) { 		this.heap = []; 		this.compare = compare; 	}  	enqueue(value) { 		this.heap.push(value); 		this.bubbleUp(); 	}  	bubbleUp() { 		let index = this.heap.length - 1; 		while (index > 0) { 			let element = this.heap[index], 			    parentIndex = Math.floor((index - 1) / 2), 			    parent = this.heap[parentIndex]; 			if (this.compare(element, parent) < 0) break; 			this.heap[index] = parent; 			this.heap[parentIndex] = element; 			index = parentIndex; 		} 	}  	dequeue() { 		let max = this.heap[0]; 		let end = this.heap.pop(); 		if (this.heap.length > 0) { 			this.heap[0] = end; 			this.sinkDown(0); 		} 		return max; 	}  	sinkDown(index) { 		let left = 2 * index + 1, 		    right = 2 * index + 2, 		    largest = index;  		if ( 		    left < this.heap.length && 		    this.compare(this.heap[left], this.heap[largest]) > 0 		) { 			largest = left; 		}  		if ( 		    right < this.heap.length && 		    this.compare(this.heap[right], this.heap[largest]) > 0 		) { 			largest = right; 		}  		if (largest !== index) { 			[this.heap[largest], this.heap[index]] = [ 			            this.heap[index], 			            this.heap[largest], 			        ]; 			this.sinkDown(largest); 		} 	}  	isEmpty() { 		return this.heap.length === 0; 	} }  // Class to represent huffman tree  class Node { 	constructor(x) { 		this.data = x; 		this.left = null; 		this.right = null; 	} }  // Function to traverse tree in preorder  // manner and push the huffman representation  // of each character. function preOrder(root, ans, curr) { 	if (root === null) return;  	// Leaf node represents a character. 	if (root.left === null && root.right === null) { 		ans.push(curr); 		return; 	}  	preOrder(root.left, ans, curr + '0'); 	preOrder(root.right, ans, curr + '1'); }  function huffmanCodes(s, freq) { 	let n = s.length;  	// Min heap for node class. 	let pq = new PriorityQueue((a, b) => { 	    if (a.data <= b.data) return 1; 	    return -1; 	}); 	for (let i = 0; i < n; i++) { 		let tmp = new Node(freq[i]); 		pq.enqueue(tmp); 	}  	// Construct huffman tree. 	while (pq.heap.length >= 2) { 		// Left node  		let l = pq.dequeue();  		// Right node  		let r = pq.dequeue();  		let newNode = new Node(l.data + r.data); 		newNode.left = l; 		newNode.right = r;  		pq.enqueue(newNode); 	}  	let root = pq.dequeue(); 	let ans = []; 	preOrder(root, ans, ""); 	return ans; }  let s = "abcdef"; let freq = [5, 9, 12, 13, 16, 45]; let ans = huffmanCodes(s, freq); console.log(ans.join(" ")); 

Output
0 100 101 1100 1101 111 

Time complexity: O(nlogn) where n is the number of unique characters
Space complexity :- O(n)

Applications of Huffman Coding:

  1. They are used for transmitting fax and text.
  2. They are used by conventional compression formats like PKZIP, GZIP, etc.
  3. Multimedia codecs like JPEG, PNG, and MP3 use Huffman encoding(to be more precise the prefix codes).

 It is useful in cases where there is a series of frequently occurring characters.



Next Article
Huffman Coding using Priority Queue
author
kartik
Improve
Article Tags :
  • DSA
  • Greedy
  • Heap
  • Amazon
  • encoding-decoding
  • Huffman Coding
  • Morgan Stanley
  • priority-queue
  • Samsung
  • United Health Group
Practice Tags :
  • Amazon
  • Morgan Stanley
  • Samsung
  • United Health Group
  • Greedy
  • Heap
  • priority-queue

Similar Reads

  • Huffman Coding | Greedy Algo-3
    Huffman coding is a lossless data compression algorithm. The idea is to assign variable-length codes to input characters, lengths of the assigned codes are based on the frequencies of corresponding characters. The variable-length codes assigned to input characters are Prefix Codes, means the codes (
    12 min read
  • Huffman Coding using Priority Queue
    Prerequisite: Greedy Algorithms | Set 3 (Huffman Coding), priority_queue::push() and priority_queue::pop() in C++ STL Given a char array ch[] and frequency of each character as freq[]. The task is to find Huffman Codes for every character in ch[] using Priority Queue. Example Input: ch[] = { 'a', 'b
    12 min read
  • Canonical Huffman Coding
    Huffman Coding is a lossless data compression algorithm where each character in the data is assigned a variable length prefix code. The least frequent character gets the largest code and the most frequent one gets the smallest code. Encoding the data using this technique is very easy and efficient.
    11 min read
  • Huffman Decoding
    We have discussed Huffman Encoding in a previous post. In this post, decoding is discussed. Examples: Input Data: AAAAAABCCCCCCDDEEEEEFrequencies: A: 6, B: 1, C: 6, D: 2, E: 5 Encoded Data: 0000000000001100101010101011111111010101010 Huffman Tree: '#' is the special character usedfor internal nodes
    15 min read
  • Efficient Huffman Coding for Sorted Input | Greedy Algo-4
    We recommend to read following post as a prerequisite for this.Greedy Algorithms | Set 3 (Huffman Coding) Time complexity of the algorithm discussed in above post is O(nLogn). If we know that the given array is sorted (by non-decreasing order of frequency), we can generate Huffman codes in O(n) time
    15+ min read
  • Text File Compression And Decompression Using Huffman Coding
    Text files can be compressed to make them smaller and faster to send, and unzipping files on devices has a low overhead. The process of encoding involves changing the representation of a file so that the (binary) compressed output takes less space to store and takes less time to transmit while retai
    14 min read
  • Image Compression using Huffman Coding
    Huffman coding is one of the basic compression methods, that have proven useful in image and video compression standards. When applying Huffman encoding technique on an Image, the source symbols can be either pixel intensities of the Image, or the output of an intensity mapping function. Prerequisit
    15+ min read
  • Adaptive Huffman Coding And Decoding
    Prerequisite: Huffman Coding, Huffman Decoding Adaptive Huffman Coding is also known as Dynamic Huffman Coding. The implementation is done using Vitter Algorithm. Encoding Adaptive Huffman coding for a string containing alphabets: Let m be the total number of alphabets. So m = 26. For Vitter Algorit
    7 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences