Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
Program to find Determinant of a Matrix
Next article icon

How to inverse a matrix using NumPy

Last Updated : 05 May, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

In this article, we will see NumPy Inverse Matrix in Python before that we will try to understand the concept of it. The inverse of a matrix is just a reciprocal of the matrix as we do in normal arithmetic for a single number which is used to solve the equations to find the value of unknown variables. The inverse of a matrix is that matrix which when multiplied with the original matrix will give an identity matrix. 

The inverse of a matrix exists only if the matrix is non-singular i.e., the determinant should not be 0. Using determinant and adjoint, we can easily find the inverse of a square matrix using the below formula,

if det(A) != 0 A-1 = adj(A)/det(A) else "Inverse doesn't exist"

Matrix Equation:

[Tex]=>Ax = B\\ =>A^{-1}Ax = A^{-1}B\\ =>x = A^{-1}B[/Tex]

where,

A-1: The inverse of matrix A

x: The unknown variable column

B: The solution matrix

Inverse Matrix using NumPy

Python provides a very easy method to calculate the inverse of a matrix. The function numpy.linalg.inv() is available in the NumPy module and is used to compute the inverse matrix in Python.

Syntax: numpy.linalg.inv(a)

Parameters:

  • a: Matrix to be inverted

Returns:  Inverse of the matrix a.

Example 1: In this example, we will create a 3 by 3 NumPy array matrix and then convert it into an inverse matrix using the np.linalg.inv() function.

Python3

# Import required package
import numpy as np
 
# Taking a 3 * 3 matrix
A = np.array([[6, 1, 1],
              [4, -2, 5],
              [2, 8, 7]])
 
# Calculating the inverse of the matrix
print(np.linalg.inv(A))
                      
                       

Output:

[[ 0.17647059 -0.00326797 -0.02287582] [ 0.05882353 -0.13071895 0.08496732] [-0.11764706 0.1503268 0.05228758]]

Example 2: In this example, we will create a 4 by 4 NumPy array matrix and then convert it using np.linalg.inv() function into an inverse Matrix in Python.

Python3

# Import required package
import numpy as np
 
# Taking a 4 * 4 matrix
A = np.array([[6, 1, 1, 3],
              [4, -2, 5, 1],
              [2, 8, 7, 6],
              [3, 1, 9, 7]])
 
# Calculating the inverse of the matrix
print(np.linalg.inv(A))
                      
                       

Output:

[[ 0.13368984 0.10695187 0.02139037 -0.09090909] [-0.00229183 0.02673797 0.14820474 -0.12987013] [-0.12987013 0.18181818 0.06493506 -0.02597403] [ 0.11000764 -0.28342246 -0.11382735 0.23376623]]

Example 3: In this example, we will create multiple NumPy array matrices and then convert them into their inverse matrices using np.linalg.inv() function.

Python3

# Import required package
import numpy as np
 
# Inverses of several matrices can
# be computed at once
A = np.array([[[1., 2.], [3., 4.]],
              [[1, 3], [3, 5]]])
 
# Calculating the inverse of the matrix
print(np.linalg.inv(A))
                      
                       

Output:

[[[-2. 1. ] [ 1.5 -0.5 ]] [[-1.25 0.75] [ 0.75 -0.25]]]



Next Article
Program to find Determinant of a Matrix

A

AmiyaRanjanRout
Improve
Article Tags :
  • Numpy
  • Python
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • Maths for Machine Learning
    Mathematics is the foundation of machine learning. Math concepts plays a crucial role in understanding how models learn from data and optimizing their performance. Before diving into machine learning algorithms, it's important to familiarize yourself with foundational topics, like Statistics, Probab
    5 min read
  • Linear Algebra and Matrix

    • Matrices
      Matrices are key concepts in mathematics, widely used in solving equations and problems in fields like physics and computer science. A matrix is simply a grid of numbers, and a determinant is a value calculated from a square matrix. Example: [Tex]\begin{bmatrix} 6 & 9 \\ 5 & -4 \\ \end{bmatr
      3 min read

    • Scalar and Vector
      Scalar and Vector Quantities are used to describe the motion of an object. Scalar Quantities are defined as physical quantities that have magnitude or size only. For example, distance, speed, mass, density, etc. However, vector quantities are those physical quantities that have both magnitude and di
      8 min read

    • Add Two Matrices - Python
      The task of adding two matrices in Python involves combining corresponding elements from two given matrices to produce a new matrix. Each element in the resulting matrix is obtained by adding the values at the same position in the input matrices. For example, if two 2x2 matrices are given as: The su
      3 min read

    • Python Program to Multiply Two Matrices
      Given two matrices, we will have to create a program to multiply two matrices in Python. Example: Python Matrix Multiplication of Two-Dimension [GFGTABS] Python matrix_a = [[1, 2], [3, 4]] matrix_b = [[5, 6], [7, 8]] result = [[0, 0], [0, 0]] for i in range(2): for j in range(2): result[i][j] = (mat
      5 min read

    • Vector Operations
      Vectors are fundamental quantities in physics and mathematics, that have both magnitude and direction. So performing mathematical operations on them directly is not possible. So we have special operations that work only with vector quantities and hence the name, vector operations. Thus, It is essent
      8 min read

    • Product of Vectors
      Vector operations are used almost everywhere in the field of physics. Many times these operations include addition, subtraction, and multiplication. Addition and subtraction can be performed using the triangle law of vector addition. In the case of products, vector multiplication can be done in two
      6 min read

    • Scalar Product of Vectors
      Two vectors or a vector and a scalar can be multiplied. There are mainly two kinds of products of vectors in physics, scalar multiplication of vectors and Vector Product (Cross Product) of two vectors. The result of the scalar product of two vectors is a number (a scalar). The common use of the scal
      9 min read

    • Dot and Cross Products on Vectors
      A quantity that has both magnitude and direction is known as a vector. Various operations can be performed on such quantities, such as addition, subtraction, and multiplication (products), etc. Some examples of vector quantities are: velocity, force, acceleration, and momentum, etc. Vectors can be m
      8 min read

    • Transpose a matrix in Single line in Python
      Transpose of a matrix is a task we all can perform very easily in Python (Using a nested loop). But there are some interesting ways to do the same in a single line. In Python, we can implement a matrix as a nested list (a list inside a list). Each element is treated as a row of the matrix. For examp
      4 min read

    • Transpose of a Matrix
      A Matrix is a rectangular arrangement of numbers (or elements) in rows and columns. It is often used in mathematics to represent data, solve systems of equations, or perform transformations. A matrix is written as: [Tex]A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9\e
      12 min read

    • Adjoint and Inverse of a Matrix
      Given a square matrix, find the adjoint and inverse of the matrix. We strongly recommend you to refer determinant of matrix as a prerequisite for this. Adjoint (or Adjugate) of a matrix is the matrix obtained by taking the transpose of the cofactor matrix of a given square matrix is called its Adjoi
      15+ min read

    • How to inverse a matrix using NumPy
      In this article, we will see NumPy Inverse Matrix in Python before that we will try to understand the concept of it. The inverse of a matrix is just a reciprocal of the matrix as we do in normal arithmetic for a single number which is used to solve the equations to find the value of unknown variable
      3 min read

    • Program to find Determinant of a Matrix
      The determinant of a Matrix is defined as a special number that is defined only for square matrices (matrices that have the same number of rows and columns). A determinant is used in many places in calculus and other matrices related to algebra, it actually represents the matrix in terms of a real n
      15+ min read

    • Program to find Normal and Trace of a matrix
      Given a 2D matrix, the task is to find Trace and Normal of matrix.Normal of a matrix is defined as square root of sum of squares of matrix elements.Trace of a n x n square matrix is sum of diagonal elements. Examples : Input : mat[][] = {{7, 8, 9}, {6, 1, 2}, {5, 4, 3}}; Output : Normal = 16 Trace =
      6 min read

    • Data Science | Solving Linear Equations
      Linear Algebra is a very fundamental part of Data Science. When one talks about Data Science, data representation becomes an important aspect of Data Science. Data is represented usually in a matrix form. The second important thing in the perspective of Data Science is if this data contains several
      9 min read

    • Data Science - Solving Linear Equations with Python
      A collection of equations with linear relationships between the variables is known as a system of linear equations. The objective is to identify the values of the variables that concurrently satisfy each equation, each of which is a linear constraint. By figuring out the system, we can learn how the
      4 min read

    • System of Linear Equations
      In mathematics, a system of linear equations consists of two or more linear equations that share the same variables. These systems often arise in real-world applications, such as engineering, physics, economics, and more, where relationships between variables need to be analyzed. Understanding how t
      8 min read

    • System of Linear Equations in three variables using Cramer's Rule
      Cramer's rule: In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknown variables. It expresses the solution in terms of the determinants of the coefficient matrix and of matrices obtained from it by replacing one colu
      12 min read

    • Eigenvalues and Eigenvectors
      Eigenvectors are the directions that remain unchanged during a transformation, even if they get longer or shorter. Eigenvalues are the numbers that indicate how much something stretches or shrinks during that transformation. These ideas are important in many areas of math and engineering, including
      15+ min read

    • Applications of Eigenvalues and Eigenvectors
      Eigenvalues and eigenvectors play a crucial role in a wide range of applications across engineering and science. Fields like control theory, vibration analysis, electric circuits, advanced dynamics, and quantum mechanics frequently rely on these concepts. One key application involves transforming ma
      7 min read

    • How to compute the eigenvalues and right eigenvectors of a given square array using NumPY?
      In this article, we will discuss how to compute the eigenvalues and right eigenvectors of a given square array using NumPy library. Example: Suppose we have a matrix as: [[1,2], [2,3]] Eigenvalue we get from this matrix or square array is: [-0.23606798 4.23606798] Eigenvectors of this matrix are: [[
      2 min read

    Statistics for Machine Learning

    • Descriptive Statistic
      Statistics is the foundation of data science. Descriptive statistics are simple tools that help us understand and summarize data. They show the basic features of a dataset, like the average, highest and lowest values and how spread out the numbers are. It's the first step in making sense of informat
      5 min read

    • Measures of Central Tendency
      Usually, frequency distribution and graphical representation are used to depict a set of raw data to attain meaningful conclusions from them. However, sometimes, these methods fail to convey a proper and clear picture of the data as expected. Therefore, some measures, also known as Measures of Centr
      5 min read

    • Measures of Dispersion | Types, Formula and Examples
      Measures of Dispersion are used to represent the scattering of data. These are the numbers that show the various aspects of the data spread across various parameters. Let's learn about the measure of dispersion in statistics, its types, formulas, and examples in detail. Dispersion in StatisticsDispe
      10 min read

    • Mean, Variance and Standard Deviation
      Mean, Variance and Standard Deviation are fundamental concepts in statistics and engineering mathematics, essential for analyzing and interpreting data. These measures provide insights into data's central tendency, dispersion, and spread, which are crucial for making informed decisions in various en
      10 min read

    • Calculate the average, variance and standard deviation in Python using NumPy
      Numpy in Python is a general-purpose array-processing package. It provides a high-performance multidimensional array object and tools for working with these arrays. It is the fundamental package for scientific computing with Python. Numpy provides very easy methods to calculate the average, variance
      5 min read

    • Random Variable
      Random variable is a fundamental concept in statistics that bridges the gap between theoretical probability and real-world data. A Random variable in statistics is a function that assigns a real value to an outcome in the sample space of a random experiment. For example: if you roll a die, you can a
      11 min read

    • Difference between Parametric and Non-Parametric Methods
      Statistical analysis plays a crucial role in understanding and interpreting data across various disciplines. Two prominent approaches in statistical analysis are Parametric and Non-Parametric Methods. While both aim to draw inferences from data, they differ in their assumptions and underlying princi
      8 min read

    • Probability Distribution - Function, Formula, Table
      A probability distribution describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment. While a frequency distribution shows how often outcomes occur in a sample or
      15+ min read

    • Confidence Interval
      Confidence Interval (CI) is a range of values that estimates where the true population value is likely to fall. Instead of just saying The average height of students is 165 cm a confidence interval allow us to say We are 95% confident that the true average height is between 160 cm and 170 cm. Before
      9 min read

    • Covariance and Correlation
      Covariance and correlation are the two key concepts in Statistics that help us analyze the relationship between two variables. Covariance measures how two variables change together, indicating whether they move in the same or opposite directions. In this article, we will learn about the differences
      5 min read

    • Program to Find Correlation Coefficient
      The correlation coefficient is a statistical measure that helps determine the strength and direction of the relationship between two variables. It quantifies how changes in one variable correspond to changes in another. This coefficient, sometimes referred to as the cross-correlation coefficient, al
      9 min read

    • Robust Correlation
      Correlation is a statistical tool that is used to analyze and measure the degree of relationship or degree of association between two or more variables. There are generally three types of correlation: Positive correlation: When we increase the value of one variable, the value of another variable inc
      8 min read

    • Normal Probability Plot
      The probability plot is a way of visually comparing the data coming from different distributions. These data can be of empirical dataset or theoretical dataset. The probability plot can be of two types: P-P plot: The (Probability-to-Probability) p-p plot is the way to visualize the comparing of cumu
      3 min read

    • Quantile Quantile plots
      The quantile-quantile( q-q plot) plot is a graphical method for determining if a dataset follows a certain probability distribution or whether two samples of data came from the same population or not. Q-Q plots are particularly useful for assessing whether a dataset is normally distributed or if it
      8 min read

    • True Error vs Sample Error
      True Error The true error can be said as the probability that the hypothesis will misclassify a single randomly drawn sample from the population. Here the population represents all the data in the world. Let's consider a hypothesis h(x) and the true/target function is f(x) of population P. The proba
      3 min read

    • Bias-Variance Trade Off - Machine Learning
      It is important to understand prediction errors (bias and variance) when it comes to accuracy in any machine-learning algorithm. There is a tradeoff between a model’s ability to minimize bias and variance which is referred to as the best solution for selecting a value of Regularization constant. A p
      3 min read

    • Understanding Hypothesis Testing
      Hypothesis method compares two opposite statements about a population and uses sample data to decide which one is more likely to be correct.To test this assumption we first take a sample from the population and analyze it and use the results of the analysis to decide if the claim is valid or not. Su
      14 min read

    • T-test
      After learning about the Z-test we now move on to another important statistical test called the t-test. While the Z-test is useful when we know the population variance. The t-test is used to compare the averages of two groups to see if they are significantly different from each other. Suppose You wa
      11 min read

    • Paired T-Test - A Detailed Overview
      Student’s t-test or t-test is the statistical method used to determine if there is a difference between the means of two samples. The test is often performed to find out if there is any sampling error or unlikeliness in the experiment. This t-test is further divided into 3 types based on your data a
      5 min read

    • P-value in Machine Learning
      P-value helps us determine how likely it is to get a particular result when the null hypothesis is assumed to be true. It is the probability of getting a sample like ours or more extreme than ours if the null hypothesis is correct. Therefore, if the null hypothesis is assumed to be true, the p-value
      6 min read

    • F-Test in Statistics
      F test is a statistical test that is used in hypothesis testing that determines whether the variances of two samples are equal or not. The article will provide detailed information on f test, f statistic, its calculation, critical value and how to use it to test hypotheses. To understand F test firs
      6 min read

    • Z-test : Formula, Types, Examples
      After learning about inferential statistics we now move on to a more specific technique used for making decisions based on sample data – the Z-test. Studying entire populations can be time-consuming, costly and sometimes impossible. so instead you take a sample from that population. This is where th
      9 min read

    • Residual Leverage Plot (Regression Diagnostic)
      In linear or multiple regression, it is not enough to just fit the model into the dataset. But, it may not give the desired result. To apply the linear or multiple regression efficiently to the dataset. There are some assumptions that we need to check on the dataset that made linear/multiple regress
      5 min read

    • Difference between Null and Alternate Hypothesis
      Hypothesis is a statement or an assumption that may be true or false. There are six types of hypotheses mainly the Simple hypothesis, Complex hypothesis, Directional hypothesis, Associative hypothesis, and Null hypothesis. Usually, the hypothesis is the start point of any scientific investigation, I
      3 min read

    • Mann and Whitney U test
      Mann and Whitney's U-test or Wilcoxon rank-sum testis the non-parametric statistic hypothesis test that is used to analyze the difference between two independent samples of ordinal data. In this test, we have provided two randomly drawn samples and we have to verify whether these two samples is from
      5 min read

    • Wilcoxon Signed Rank Test
      The Wilcoxon Signed Rank Test is a non-parametric statistical test used to compare two related groups. It is often applied when the assumptions for the paired t-test (such as normality) are not met. This test evaluates whether there is a significant difference between two paired observations, making
      5 min read

    • Kruskal Wallis Test
      The Kruskal-Wallis test (H test) is a nonparametric statistical test used to compare three or more independent groups to determine if there are statistically significant differences between them. It is an extension of the Mann-Whitney U test, which is used for comparing two groups. Unlike the one-wa
      5 min read

    • Friedman Test
      The Friedman Test is a non-parametric statistical test used to detect differences in treatments across multiple test attempts. It is often used when the data is in the form of rankings or ordinal data, and when you have more than two related groups or repeated measures. The Friedman test is the non-
      6 min read

    • Probability Class 10 Important Questions
      Probability is a fundamental concept in mathematics for measuring of chances of an event happening By assigning numerical values to the chances of different outcomes, probability allows us to model, analyze, and predict complex systems and processes. Probability Formulas for Class 10 It says the pos
      4 min read

    Probability and Probability Distributions

    • Mathematics - Law of Total Probability
      Probability theory is the branch of mathematics concerned with the analysis of random events. It provides a framework for quantifying uncertainty, predicting outcomes, and understanding random phenomena. In probability theory, an event is any outcome or set of outcomes from a random experiment, and
      13 min read

    • Bayes's Theorem for Conditional Probability
      Bayes's Theorem for Conditional Probability: Bayes's Theorem is a fundamental result in probability theory that describes how to update the probabilities of hypotheses when given evidence. Named after the Reverend Thomas Bayes, this theorem is crucial in various fields, including engineering, statis
      9 min read

    • Mathematics | Probability Distributions Set 1 (Uniform Distribution)
      Probability distribution is a mathematical function that can be thought of as providing the probabilities of occurrence of different possible outcomes in an experiment. For instance, if the random variable X is used to denote the outcome of a coin toss ("the experiment"), then the probability distri
      3 min read

    • Mathematics | Probability Distributions Set 4 (Binomial Distribution)
      The previous articles talked about some of the Continuous Probability Distributions. This article covers one of the distributions which are not continuous but discrete, namely the Binomial Distribution. Introduction - To understand the Binomial distribution, we must first understand what a Bernoulli
      5 min read

    • Mathematics | Probability Distributions Set 5 (Poisson Distribution)
      The previous article covered the Binomial Distribution. This article talks about another Discrete Probability Distribution, the Poisson Distribution. Introduction -Suppose an event can occur several times within a given unit of time. When the total number of occurrences of the event is unknown, we c
      4 min read

    • Uniform Distribution | Formula, Definition and Examples
      A Uniform Distribution is a type of probability distribution in which every outcome in a given range is equally likely to occur. That means there is no bias—no outcome is more likely than another within the specified set. It is also known as rectangular distribution (continuous uniform distribution)
      12 min read

    • Mathematics | Probability Distributions Set 2 (Exponential Distribution)
      The previous article covered the basics of Probability Distributions and talked about the Uniform Probability Distribution. This article covers the Exponential Probability Distribution which is also a Continuous distribution just like Uniform Distribution. Introduction - Suppose we are posed with th
      5 min read

    • Mathematics | Probability Distributions Set 3 (Normal Distribution)
      The previous two articles introduced two Continuous Distributions: Uniform and Exponential. This article covers the Normal Probability Distribution, also a Continuous distribution, which is by far the most widely used model for continuous measurement. Introduction - Whenever a random experiment is r
      5 min read

    • Mathematics | Beta Distribution Model
      The Beta Distribution is a continuous probability distribution defined on the interval [0, 1], widely used in statistics and various fields for modeling random variables that represent proportions or probabilities. It is particularly useful when dealing with scenarios where the outcomes are bounded
      12 min read

    • Gamma Distribution Model in Mathematics
      Introduction : Suppose an event can occur several times within a given unit of time. When the total number of occurrences of the event is unknown, we can think of it as a random variable. Now, if this random variable X has gamma distribution, then its probability density function is given as follows
      2 min read

    • Chi-Square Test for Feature Selection - Mathematical Explanation
      One of the primary tasks involved in any supervised Machine Learning venture is to select the best features from the given dataset to obtain the best results. One way to select these features is the Chi-Square Test. Mathematically, a Chi-Square test is done on two distributions two determine the lev
      4 min read

    • Student's t-distribution in Statistics
      As we know normal distribution assumes two important characteristics about the dataset: a large sample size and knowledge of the population standard deviation. However, if we do not meet these two criteria, and we have a small sample size or an unknown population standard deviation, then we use the
      10 min read

    • Python - Central Limit Theorem
      Central Limit Theorem (CLT) is a foundational principle in statistics, and implementing it using Python can significantly enhance data analysis capabilities. Statistics is an important part of data science projects. We use statistical tools whenever we want to make any inference about the population
      7 min read

    • Limits, Continuity and Differentiability
      Limits, Continuity, and Differentiation are fundamental concepts in calculus. They are essential for analyzing and understanding function behavior and are crucial for solving real-world problems in physics, engineering, and economics. Table of Content LimitsKey Characteristics of LimitsExample of Li
      10 min read

    • Implicit Differentiation
      Implicit Differentiation is the process of differentiation in which we differentiate the implicit function without converting it into an explicit function. For example, we need to find the slope of a circle with an origin at 0 and a radius r. Its equation is given as x2 + y2 = r2. Now, to find the s
      6 min read

    Calculus for Machine Learning

    • Partial Derivatives in Engineering Mathematics
      Partial derivatives are a basic concept in multivariable calculus. They convey how a function would change when one of its input variables changes, while keeping all the others constant. This turns out to be particularly useful in fields such as physics, engineering, economics, and computer science,
      10 min read

    • Advanced Differentiation
      Derivatives are used to measure the rate of change of any quantity. This process is called differentiation. It can be considered as a building block of the theory of calculus. Geometrically speaking, the derivative of any function at a particular point gives the slope of the tangent at that point of
      8 min read

    • How to find Gradient of a Function using Python?
      The gradient of a function simply means the rate of change of a function. We will use numdifftools to find Gradient of a function. Examples: Input : x^4+x+1 Output :Gradient of x^4+x+1 at x=1 is 4.99 Input :(1-x)^2+(y-x^2)^2 Output :Gradient of (1-x^2)+(y-x^2)^2 at (1, 2) is [-4. 2.] Approach: For S
      2 min read

    • Optimization techniques for Gradient Descent
      Gradient Descent is a widely used optimization algorithm for machine learning models. However, there are several optimization techniques that can be used to improve the performance of Gradient Descent. Here are some of the most popular optimization techniques for Gradient Descent: Learning Rate Sche
      4 min read

    • Higher Order Derivatives
      Higher order derivatives refer to the derivatives of a function that are obtained by repeatedly differentiating the original function. The first derivative of a function, f′(x), represents the rate of change or slope of the function at a point.The second derivative, f′′(x), is the derivative of the
      6 min read

    • Taylor Series
      A Taylor series represents a function as an infinite sum of terms, calculated from the values of its derivatives at a single point. Taylor series is a powerful mathematical tool used to approximate complex functions with an infinite sum of terms derived from the function's derivatives at a single po
      8 min read

    • Application of Derivative - Maxima and Minima
      Derivatives have many applications, like finding rate of change, approximation, maxima/minima and tangent. In this section, we focus on their use in finding maxima and minima. Note: If f(x) is a continuous function, then for every continuous function on a closed interval has a maximum and a minimum
      6 min read

    • Absolute Minima and Maxima
      Absolute Maxima and Minima are the maximum and minimum values of the function defined on a fixed interval. A function in general can have high values or low values as we move along the function. The maximum value of the function in any interval is called the maxima and the minimum value of the funct
      12 min read

    • Optimization for Data Science
      From a mathematical foundation viewpoint, it can be said that the three pillars for data science that we need to understand quite well are Linear Algebra , Statistics and the third pillar is Optimization which is used pretty much in all data science algorithms. And to understand the optimization con
      5 min read

    • Unconstrained Multivariate Optimization
      Wikipedia defines optimization as a problem where you maximize or minimize a real function by systematically choosing input values from an allowed set and computing the value of the function. That means when we talk about optimization we are always interested in finding the best solution. So, let sa
      4 min read

    • Lagrange Multipliers | Definition and Examples
      In mathematics, a Lagrange multiplier is a potent tool for optimization problems and is applied especially in the cases of constraints. Named after the Italian-French mathematician Joseph-Louis Lagrange, the method provides a strategy to find maximum or minimum values of a function along one or more
      8 min read

    • Lagrange's Interpolation
      What is Interpolation? Interpolation is a method of finding new data points within the range of a discrete set of known data points (Source Wiki). In other words interpolation is the technique to estimate the value of a mathematical function, for any intermediate value of the independent variable. F
      7 min read

    • Linear Regression in Machine learning
      Linear regression is a type of supervised machine-learning algorithm that learns from the labelled datasets and maps the data points with most optimized linear functions which can be used for prediction on new datasets.It assumes that there is a linear relationship between the input and output, mean
      15+ min read

    • Ordinary Least Squares (OLS) using statsmodels
      Ordinary Least Squares (OLS) is a widely used statistical method for estimating the parameters of a linear regression model. It minimizes the sum of squared residuals between observed and predicted values. In this article we will learn how to implement Ordinary Least Squares (OLS) regression using P
      3 min read

    Regression in Machine Learning

    geeksforgeeks-footer-logo
    Corporate & Communications Address:
    A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
    Registered Address:
    K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
    GFG App on Play Store GFG App on App Store
    Advertise with us
    • Company
    • About Us
    • Legal
    • Privacy Policy
    • In Media
    • Contact Us
    • Advertise with us
    • GFG Corporate Solution
    • Placement Training Program
    • Languages
    • Python
    • Java
    • C++
    • PHP
    • GoLang
    • SQL
    • R Language
    • Android Tutorial
    • Tutorials Archive
    • DSA
    • Data Structures
    • Algorithms
    • DSA for Beginners
    • Basic DSA Problems
    • DSA Roadmap
    • Top 100 DSA Interview Problems
    • DSA Roadmap by Sandeep Jain
    • All Cheat Sheets
    • Data Science & ML
    • Data Science With Python
    • Data Science For Beginner
    • Machine Learning
    • ML Maths
    • Data Visualisation
    • Pandas
    • NumPy
    • NLP
    • Deep Learning
    • Web Technologies
    • HTML
    • CSS
    • JavaScript
    • TypeScript
    • ReactJS
    • NextJS
    • Bootstrap
    • Web Design
    • Python Tutorial
    • Python Programming Examples
    • Python Projects
    • Python Tkinter
    • Python Web Scraping
    • OpenCV Tutorial
    • Python Interview Question
    • Django
    • Computer Science
    • Operating Systems
    • Computer Network
    • Database Management System
    • Software Engineering
    • Digital Logic Design
    • Engineering Maths
    • Software Development
    • Software Testing
    • DevOps
    • Git
    • Linux
    • AWS
    • Docker
    • Kubernetes
    • Azure
    • GCP
    • DevOps Roadmap
    • System Design
    • High Level Design
    • Low Level Design
    • UML Diagrams
    • Interview Guide
    • Design Patterns
    • OOAD
    • System Design Bootcamp
    • Interview Questions
    • Inteview Preparation
    • Competitive Programming
    • Top DS or Algo for CP
    • Company-Wise Recruitment Process
    • Company-Wise Preparation
    • Aptitude Preparation
    • Puzzles
    • School Subjects
    • Mathematics
    • Physics
    • Chemistry
    • Biology
    • Social Science
    • English Grammar
    • Commerce
    • World GK
    • GeeksforGeeks Videos
    • DSA
    • Python
    • Java
    • C++
    • Web Development
    • Data Science
    • CS Subjects
    @GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
    We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
    Lightbox
    Improvement
    Suggest Changes
    Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
    geeksforgeeks-suggest-icon
    Create Improvement
    Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
    geeksforgeeks-improvement-icon
    Suggest Changes
    min 4 words, max Words Limit:1000

    Thank You!

    Your suggestions are valuable to us.

    What kind of Experience do you want to share?

    Interview Experiences
    Admission Experiences
    Career Journeys
    Work Experiences
    Campus Experiences
    Competitive Exam Experiences