Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Heap
  • Practice Heap
  • MCQs on Heap
  • Heap Tutorial
  • Binary Heap
  • Building Heap
  • Binomial Heap
  • Fibonacci Heap
  • Heap Sort
  • Heap vs Tree
  • Leftist Heap
  • K-ary Heap
  • Advantages & Disadvantages
Open In App
Next Article:
Iterative HeapSort
Next article icon

How to check if a given array represents a Binary Heap?

Last Updated : 15 Dec, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given an array, how to check if the given array represents a Binary Max-Heap.
Examples: 

Input:  arr[] = {90, 15, 10, 7, 12, 2}   Output: True  The given array represents below tree         90       /    \     15      10    /  \     /   7    12  2   The tree follows max-heap property as every  node is greater than all of its descendants.    Input:  arr[] = {9, 15, 10, 7, 12, 11}   Output: False  The given array represents below tree         9       /    \     15      10    /  \     /   7    12  11  The tree doesn't follows max-heap property 9 is   smaller than 15 and 10, and 10 is smaller than 11. 
Recommended PracticeDoes array represent HeapTry It!

A Simple Solution is to first check root if it’s greater than all of its descendants. Then check for children of the root. Time complexity of this solution is O(n2)

An Efficient Solution is to compare root only with its children (not all descendants), if root is greater than its children and the same is true for all nodes, then tree is max-heap (This conclusion is based on transitive property of > operator, i.e., if x > y and y > z, then x > z).
The last internal node is present at index (n-2)/2 assuming that indexing begins with 0.

Below is the implementation of this solution. 

C++




// C program to check whether a given array
// represents a max-heap or not
#include <limits.h>
#include <stdio.h>
  
// Returns true if arr[i..n-1] represents a
// max-heap
bool isHeap(int arr[], int i, int n)
{
    // If (2 * i) + 1 >= n, then leaf node, so return true
    if (i >= (n - 1) / 2)
        return true;
  
    // If an internal node and is 
    // greater than its children,
    // and same is recursively 
    // true for the children
    if (arr[i] >= arr[2 * i + 1] && 
        arr[i] >= arr[2 * i + 2]
        && isHeap(arr, 2 * i + 1, n)
        && isHeap(arr, 2 * i + 2, n))
        return true;
  
    return false;
}
  
// Driver program
int main()
{
    int arr[] = { 90, 15, 10, 7, 12, 2, 7, 3 };
    int n = sizeof(arr) / sizeof(int) - 1;
  
    isHeap(arr, 0, n) ? printf("Yes") : printf("No");
  
    return 0;
}
 
 

Java




// Java program to check whether a given array
// represents a max-heap or not
class GFG 
{
  
    // Returns true if arr[i..n-1] 
    // represents a max-heap
    static boolean isHeap(int arr[], 
                          int i, int n)
    {
        // If (2 * i) + 1 >= n, then leaf node, so return true
        if (i >= (n - 1) / 2) 
        {
            return true;
        }
  
        // If an internal node and 
        // is greater than its
        // children, and same is 
        // recursively true for the
        // children
        if (arr[i] >= arr[2 * i + 1]
            && arr[i] >= arr[2 * i + 2]
            && isHeap(arr, 2 * i + 1, n)
            && isHeap(arr, 2 * i + 2, n)) 
        {
            return true;
        }
  
        return false;
    }
  
    // Driver program
    public static void main(String[] args)
    {
        int arr[] = { 90, 15, 10, 7, 12, 2, 7, 3 };
        int n = arr.length - 1;
        if (isHeap(arr, 0, n)) {
            System.out.println("Yes");
        }
        else {
            System.out.println("No");
        }
    }
}
  
// This code contributed by 29AjayKumar
 
 

Python3




# Python3 program to check whether a 
# given array represents a max-heap or not 
  
# Returns true if arr[i..n-1] 
# represents a max-heap 
def isHeap(arr, i, n):
      
    # If (2 * i) + 1 >= n, then leaf node, so return true
    if i >= int((n - 1) / 2): 
        return True
      
    # If an internal node and is greater 
    # than its children, and same is
    # recursively true for the children 
    if(arr[i] >= arr[2 * i + 1] and 
       arr[i] >= arr[2 * i + 2] and 
       isHeap(arr, 2 * i + 1, n) and
       isHeap(arr, 2 * i + 2, n)):
        return True
      
    return False
  
# Driver Code
if __name__ == '__main__':
    arr = [90, 15, 10, 7, 12, 2, 7, 3] 
    n = len(arr) - 1
  
    if isHeap(arr, 0, n):
        print("Yes")
    else:
        print("No")
  
# This code is contributed by PranchalK
 
 

C#




// C# program to check whether a given  
// array represents a max-heap or not
using System;
  
class GFG
{
  
// Returns true if arr[i..n-1] represents a 
// max-heap 
static bool isHeap(int []arr, int i, int n) 
{
    // If (2 * i) + 1 >= n, then leaf node, so return true
    if (i >= (n - 1) / 2) 
    {
        return true;
    }
  
    // If an internal node and is greater 
    // than its children, and same is 
    // recursively true for the children 
    if (arr[i] >= arr[2 * i + 1] && 
        arr[i] >= arr[2 * i + 2] && 
        isHeap(arr, 2 * i + 1, n) && 
        isHeap(arr, 2 * i + 2, n)) 
    {
        return true;
    }
  
    return false;
}
  
// Driver Code 
public static void Main(String[] args)
{
    int []arr = {90, 15, 10, 7, 12, 2, 7, 3};
    int n = arr.Length-1;
    if (isHeap(arr, 0, n))
    {
        Console.Write("Yes");
    } 
      
    else
    {
        Console.Write("No");
    }
}
}
 
 

PHP




<?php
// PHP program to check whether a given 
// array represents a max-heap or not
  
// Returns true if arr[i..n-1] 
// represents a max-heap
function isHeap($arr, $i, $n)
{
      
// If (2 * i) + 1 >= n, then leaf node, so return true
if ($i >= ($n - 1) / 2)
    return true;
  
// If an internal node and is greater 
// than its children, and same is 
// recursively true for the children
if ($arr[$i] >= $arr[2 * $i + 1] && 
    $arr[$i] >= $arr[2 * $i + 2] && 
    isHeap($arr, 2 * $i + 1, $n) && 
    isHeap($arr, 2 * $i + 2, $n))
    return true;
  
return false;
}
  
// Driver Code
$arr = array(90, 15, 10, 7, 12, 2, 7, 3);
$n = sizeof($arr);
  
if(isHeap($arr, 0, $n))
    echo "Yes";
else
    echo "No";
  
// This code is contributed 
// by Akanksha Rai
?>
 
 

Javascript




<script>
// Javascript program to check whether a given array
// represents a max-heap or not
  
// Returns true if arr[i..n-1]
    // represents a max-heap
function isHeap(arr,i,n)
{
    // If (2 * i) + 1 >= n, then leaf node, so return true
        if (i >= (n - 1) / 2)
        {
            return true;
        }
   
        // If an internal node and
        // is greater than its
        // children, and same is
        // recursively true for the
        // children
        if (arr[i] >= arr[2 * i + 1]
            && arr[i] >= arr[2 * i + 2]
            && isHeap(arr, 2 * i + 1, n)
            && isHeap(arr, 2 * i + 2, n))
        {
            return true;
        }
   
        return false;
}
  
// Driver program
let arr=[ 90, 15, 10, 7, 12, 2, 7, 3 ];
let n = arr.length - 1;
if (isHeap(arr, 0, n)) {
    document.write("Yes<br>");
}
else {
    document.write("No<br>");
}
  
  
// This code is contributed by rag2127
</script>
 
 
Output
Yes

Time complexity: O(n)
Auxiliary Space: O(h), Here h is the height of the given tree and the extra space is used due to the recursion call stack.

An Iterative Solution is to traverse all internal nodes and check id the node is greater than its children or not. 

C++




// C program to check whether a given array
// represents a max-heap or not
#include <stdio.h>
#include <limits.h>
  
// Returns true if arr[i..n-1] represents a
// max-heap
bool isHeap(int arr[],  int n)
{
    // Start from root and go till the last internal
    // node
    for (int i=0; i<=(n-2)/2; i++)
    {
        // If left child is greater, return false
        if (arr[2*i +1] > arr[i])
                return false;
  
        // If right child is greater, return false
        if (2*i+2 < n && arr[2*i+2] > arr[i])
                return false;
    }
    return true;
}
  
// Driver program
int main()
{
    int arr[] = {90, 15, 10, 7, 12, 2, 7, 3};
    int n = sizeof(arr) / sizeof(int);
  
    isHeap(arr, n)? printf("Yes"): printf("No");
  
    return 0;
}
 
 

Java




// Java program to check whether a given array 
// represents a max-heap or not
  
class GFG {
  
// Returns true if arr[i..n-1] represents a 
// max-heap 
    static boolean isHeap(int arr[], int n) {
        // Start from root and go till the last internal 
        // node 
        for (int i = 0; i <= (n - 2) / 2; i++) {
            // If left child is greater, return false 
            if (arr[2 * i + 1] > arr[i]) {
                return false;
            }
  
            // If right child is greater, return false 
            if (2 * i + 2 < n && arr[2 * i + 2] > arr[i]) {
                return false;
            }
        }
        return true;
    }
  
// Driver program 
    public static void main(String[] args) {
        int arr[] = {90, 15, 10, 7, 12, 2, 7, 3};
        int n = arr.length;
        if (isHeap(arr, n)) {
            System.out.println("Yes");
        } else {
            System.out.println("No");
        }
    }
}
// This code is contributed by 29AjayKumar
 
 

Python3




# Python3 program to check whether a 
# given array represents a max-heap or not 
  
# Returns true if arr[i..n-1] 
# represents a max-heap 
def isHeap(arr, n):
      
    # Start from root and go till 
    # the last internal node
    for i in range(int((n - 2) / 2) + 1):
          
        # If left child is greater, 
        # return false 
        if arr[2 * i + 1] > arr[i]: 
                return False
  
        # If right child is greater,
        # return false 
        if (2 * i + 2 < n and
            arr[2 * i + 2] > arr[i]): 
                return False
    return True
  
# Driver Code
if __name__ == '__main__':
    arr = [90, 15, 10, 7, 12, 2, 7, 3] 
    n = len(arr)
  
    if isHeap(arr, n):
        print("Yes")
    else:
        print("No")
          
# This code is contributed by PranchalK
 
 

C#




// C# program to check whether a given array 
// represents a max-heap or not 
using System;
  
class GFG 
{
  
// Returns true if arr[i..n-1] 
// represents a max-heap 
static bool isHeap(int []arr, int n)
{ 
    // Start from root and go till 
    // the last internal node 
    for (int i = 0; i <= (n - 2) / 2; i++) 
    { 
        // If left child is greater, 
        // return false 
        if (arr[2 * i + 1] > arr[i])
        { 
            return false; 
        } 
  
        // If right child is greater, 
        // return false 
        if (2 * i + 2 < n && arr[2 * i + 2] > arr[i]) 
        { 
            return false; 
        } 
    } 
    return true; 
} 
  
// Driver Code 
public static void Main() 
{ 
    int []arr = {90, 15, 10, 7, 12, 2, 7, 3}; 
    int n = arr.Length; 
    if (isHeap(arr, n))
    { 
        Console.Write("Yes"); 
    } 
    else 
    { 
        Console.Write("No"); 
    } 
} 
} 
  
// This code is contributed 
// by 29AjayKumar
 
 

PHP




<?php
// PHP program to check whether a 
// given array represents a max-heap or not 
  
// Returns true if arr[i..n-1] 
// represents a max-heap 
function isHeap($arr, $i, $n) 
{
    // Start from root and go till 
    // the last internal node 
    for ($i = 0; $i < (($n - 2) / 2) + 1; $i++) 
    {
        // If left child is greater, 
        // return false 
        if($arr[2 * $i + 1] > $arr[$i]) 
                return False;
  
        // If right child is greater, 
        // return false 
        if (2 * $i + 2 < $n && 
                $arr[2 * $i + 2] > $arr[$i])
                return False;
      
    return True;
    }
}
  
// Driver Code 
$arr = array(90, 15, 10, 7, 12, 2, 7, 3); 
$n = sizeof($arr); 
  
if(isHeap($arr, 0, $n)) 
    echo "Yes"; 
else
    echo "No";
      
// This code is contributed by Princi Singh
?>
 
 

Javascript




<script>
  
// Javascript program to check
// whether a given array
// represents a max-heap or not
  
// Returns true if arr[i..n-1] 
// represents a max-heap
function isHeap( arr, n)
{
    // Start from root and go till 
    // the last internal node
    for (let i=0; i<=Math.floor((n-2)/2); i++)
    {
        // If left child is greater, 
        // return false
        if (arr[2*i +1] > arr[i])
                return false;
  
        // If right child is greater,
        // return false
        if (2*i+2 < n && arr[2*i+2] > arr[i])
                return false;
    }
    return true;
}
    // driver code 
      
    let arr = [90, 15, 10, 7, 12, 2, 7, 3];
    let n = arr.length;
    if (isHeap(arr, n)) {
        document.write("Yes");
        } 
    else {
        document.write("No");
        }
      
</script>
 
 
Output
Yes

Time complexity: O(n), Where n is the total number of elements in the given array.
Auxiliary Space: O(1), As constant extra space is used.

Thanks to Himanshu for suggesting this solution.



Next Article
Iterative HeapSort
author
kartik
Improve
Article Tags :
  • Arrays
  • Binary Search Tree
  • DSA
  • Heap
  • Cisco
Practice Tags :
  • Cisco
  • Arrays
  • Binary Search Tree
  • Heap

Similar Reads

  • Heap Data Structure
    A Heap is a complete binary tree data structure that satisfies the heap property: for every node, the value of its children is greater than or equal to its own value. Heaps are usually used to implement priority queues, where the smallest (or largest) element is always at the root of the tree. Basic
    2 min read
  • Introduction to Heap - Data Structure and Algorithm Tutorials
    A Heap is a special Tree-based Data Structure that has the following properties. It is a Complete Binary Tree.It either follows max heap or min heap property.Max-Heap: The value of the root node must be the greatest among all its descendant nodes and the same thing must be done for its left and righ
    15+ min read
  • Binary Heap
    A Binary Heap is a complete binary tree that stores data efficiently, allowing quick access to the maximum or minimum element, depending on the type of heap. It can either be a Min Heap or a Max Heap. In a Min Heap, the key at the root must be the smallest among all the keys in the heap, and this pr
    13 min read
  • Advantages and Disadvantages of Heap
    Advantages of Heap Data StructureTime Efficient: Heaps have an average time complexity of O(log n) for inserting and deleting elements, making them efficient for large datasets. We can convert any array to a heap in O(n) time. The most important thing is, we can get the min or max in O(1) timeSpace
    2 min read
  • Time Complexity of building a heap
    Consider the following algorithm for building a Heap of an input array A. A quick look over the above implementation suggests that the running time is [Tex]O(n * lg(n)) [/Tex] since each call to Heapify costs [Tex]O(lg(n)) [/Tex]and Build-Heap makes [Tex]O(n) [/Tex]such calls. This upper bound, thou
    2 min read
  • Applications of Heap Data Structure
    Heap Data Structure is generally taught with Heapsort. Heapsort algorithm has limited uses because Quicksort is better in practice. Nevertheless, the Heap data structure itself is enormously used. Priority Queues: Heaps are commonly used to implement priority queues, where elements with higher prior
    2 min read
  • Comparison between Heap and Tree
    What is Heap? A Heap is a special Tree-based data structure in which the tree is a complete binary tree. Types of Heap Data Structure: Generally, Heaps can be of two types: Max-Heap: In a Max-Heap the key present at the root node must be greatest among the keys present at all of its children. The sa
    3 min read
  • When building a Heap, is the structure of Heap unique?
    What is Heap? A heap is a tree based data structure where the tree is a complete binary tree that maintains the property that either the children of a node are less than itself (max heap) or the children are greater than the node (min heap). Properties of Heap: Structural Property: This property sta
    4 min read
  • Some other type of Heap

    • Binomial Heap
      The main application of Binary Heap is to implement a priority queue. Binomial Heap is an extension of Binary Heap that provides faster union or merge operation with other operations provided by Binary Heap.  A Binomial Heap is a collection of Binomial Trees What is a Binomial Tree?  A Binomial Tree
      15+ min read

    • Fibonacci Heap | Set 1 (Introduction)
      INTRODUCTION:A Fibonacci heap is a data structure used for implementing priority queues. It is a type of heap data structure, but with several improvements over the traditional binary heap and binomial heap data structures.The key advantage of a Fibonacci heap over other heap data structures is its
      5 min read

    • Leftist Tree / Leftist Heap
      INTRODUCTION:A leftist tree, also known as a leftist heap, is a type of binary heap data structure used for implementing priority queues. Like other heap data structures, it is a complete binary tree, meaning that all levels are fully filled except possibly the last level, which is filled from left
      15+ min read

    • K-ary Heap
      Prerequisite - Binary Heap K-ary heaps are a generalization of binary heap(K=2) in which each node have K children instead of 2. Just like binary heap, it follows two properties: Nearly complete binary tree, with all levels having maximum number of nodes except the last, which is filled in left to r
      15 min read

    Easy problems on Heap

    • Check if a given Binary Tree is a Heap
      Given a binary tree, check if it has heap property or not, Binary tree needs to fulfil the following two conditions for being a heap: It should be a complete tree (i.e. Every level of the tree, except possibly the last, is completely filled, and all nodes are as far left as possible.).Every node’s v
      15+ min read

    • How to check if a given array represents a Binary Heap?
      Given an array, how to check if the given array represents a Binary Max-Heap.Examples: Input: arr[] = {90, 15, 10, 7, 12, 2} Output: True The given array represents below tree 90 / \ 15 10 / \ / 7 12 2 The tree follows max-heap property as every node is greater than all of its descendants. Input: ar
      11 min read

    • Iterative HeapSort
      HeapSort is a comparison-based sorting technique where we first build Max Heap and then swap the root element with the last element (size times) and maintains the heap property each time to finally make it sorted. Examples: Input : 10 20 15 17 9 21 Output : 9 10 15 17 20 21 Input: 12 11 13 5 6 7 15
      11 min read

    • Find k largest elements in an array
      Given an array arr[] and an integer k, the task is to find k largest elements in the given array. Elements in the output array should be in decreasing order. Examples: Input: [1, 23, 12, 9, 30, 2, 50], k = 3Output: [50, 30, 23] Input: [11, 5, 12, 9, 44, 17, 2], k = 2Output: [44, 17] Table of Content
      15+ min read

    • K’th Smallest Element in Unsorted Array
      Given an array arr[] of N distinct elements and a number K, where K is smaller than the size of the array. Find the K'th smallest element in the given array. Examples: Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3 Output: 7 Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 4 Output: 10 Table of Content [Naive
      15+ min read

    • Height of a complete binary tree (or Heap) with N nodes
      Consider a Binary Heap of size N. We need to find the height of it. Examples: Input : N = 6 Output : 2 () / \ () () / \ / () () () Input : N = 9 Output : 3 () / \ () () / \ / \ () () () () / \ () ()Recommended PracticeHeight of HeapTry It! Let the size of the heap be N and the height be h. If we tak
      3 min read

    • Heap Sort for decreasing order using min heap
      Given an array of elements, sort the array in decreasing order using min heap. Examples: Input : arr[] = {5, 3, 10, 1}Output : arr[] = {10, 5, 3, 1}Input : arr[] = {1, 50, 100, 25}Output : arr[] = {100, 50, 25, 1} Prerequisite: Heap sort using min heap. Using Min Heap Implementation - O(n Log n) Tim
      11 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences