Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Python Tutorial
  • Interview Questions
  • Python Quiz
  • Python Glossary
  • Python Projects
  • Practice Python
  • Data Science With Python
  • Python Web Dev
  • DSA with Python
  • Python OOPs
Open In App
Next Article:
How to Automate Google Sheets with Python?
Next article icon

Getting started with Python for Automated Trading

Last Updated : 01 Jun, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

Automated Trading is the terminology given to trade entries and exits that are processed and executed via a computer. Automated trading has certain advantages:

  1. Minimizes human intervention: Automated trading systems eliminate emotions during trading. Traders usually have an easier time sticking to the strategy by holding emotions in check.
  2. Backtesting on historical data: Backtesting allows a trader to employ their strategies on historical data (previous week/ month/ year data). This helps them understand the implications of their strategy on real-time data and help them determine the probability of winning or losing trade.
  3. Preserving Discipline in a volatile market: When the market is volatile, traders jump the trading rules. This brings about indiscipline in the market. Discipline is lost when a trader gives in to the human emotion of greed or fear. Such parameters can be avoided with Automated trading. Automated trading helps ensure the maintenance of consistency, ensuring that execution of strategy follows rules.
  4. Increases the speed of order entry: Because computers respond to changing market conditions instantly, automated systems may produce orders as soon as the trade requirements are met.

Python gained popularity in quant finance due to its capacity of building intricate statistical models with ease. This is because of scientific libraries like Pandas, NumPy, Matplotlib, PyAlgoTrade, Pybacktest, and more.

Components Required for Automated Trading

  1. Anaconda: The first step in setting up Python is downloading Anaconda. Anaconda is a reliable distribution of Python, it consists of all tools and libraries, required to execute a Python code.
  2. Spyder IDE: IDE stands for Integrated Development Environment. It provides an interface to write, debug, compile and execute the Python code.
  3. Jupyter Notebook: Jupyter notebook is an interactive platform used to understand code snippets. Jupyter Notebook primarily uses ‘markdown’ cells for the explanation of the code and ‘code’ cells for the execution of the code. It’s highly useful for learners who are trying to understand the working of code snippets.

Note: Spyder IDE is used to run and execute big projects whereas Jupyter Notebook is used to execute small chunks of code.

Understanding popular Packages/ Libraries in Python with respect to Quant Trading

Python has a large library collection that can be used for different functionalities such as programming, machine learning, visualization, etc. However, before actually getting started with Python, we’ll talk about the most important libraries needed for coding trading strategies.

We will need to import financial data, conduct the numerical assessment, construct trading strategies, plot graphs, and perform data backtesting. The Libraries needed are listed below:

  1. NumPy: NumPy shortened for NumericalPy is used for numerical analysis of data.
  2. Pandas: Pandas is widely used when working with data in tabular format (i.e rows and columns) such as spreadsheets. It can be used to import Excel and CSV files in the python code.
  3. Matplotlib: This library comprises functions used for plotting 2D graphs.
  4. TA-Lib: TA-Lib is extensively used to perform technical analysis on data such as Bollinger Bands, RSI (Relative Strength Indicator), VWAP (Volume Weighted Average), MA (Moving Average).
  5. Zipline: An event-driven system that supports backtesting and live trading.

These are a few basic concepts that you need to understand before starting to work on building your own strategy in Python.

References:

  1. https://numpy.org/
  2. https://matplotlib.org/
  3. https://pandas.pydata.org/
  4. https://www.zipline.io/
  5. https://github.com/mrjbq7/ta-lib


Next Article
How to Automate Google Sheets with Python?
author
aditi_versha
Improve
Article Tags :
  • GBlog
  • Python
  • Technical Scripter
Practice Tags :
  • python

Similar Reads

  • Why Python Is Used For Developing Automated Trading Strategy?
    Python is a high-level programming language that is widely used in machine learning and for the automation of trading systems. Python has got exclusive library of functions that facilitate the ease of coding algorithmic trading strategies. This article is all about why the Python programming languag
    5 min read
  • Python for Game Development: Getting Started with Pygame
    For a variety of uses, including web development, data research, automation, and, more and more, game creation, Python has grown to be an immensely popular language. Python allows both novice and seasoned developers to implement all the processes by initiating a very easy and robust approach to crea
    5 min read
  • Automated Trading using Python
    Automated trading using Python involves building a program that can analyze market data and make trading decisions. We’ll use yfinance to get stock market data, Pandas and NumPy to organize and analyze it and Matplotlib to create simple charts to see trends and patterns. The idea is to use past stoc
    4 min read
  • Automating Tasks with Python: Tips and Tricks
    Python is a versatile and simple-to-learn programming language for all developers to implement any operations. It is an effective tool for automating monotonous operations while processing any environment. Programming's most fruitful use is an automation system to identify any process, and Python's
    6 min read
  • How to Automate Google Sheets with Python?
    In this article, we will discuss how to Automate Google Sheets with Python. Pygsheets is a simple python library that can be used to automate Google Sheets through the Google Sheets API. An example use of this library would be to automate the plotting of graphs based on some data in CSV files that w
    4 min read
  • Getting Started with Python Programming
    Python is a versatile, interpreted programming language celebrated for its simplicity and readability. This guide will walk us through installing Python, running first program and exploring interactive coding—all essential steps for beginners. Install PythonBefore starting this Python course first,
    3 min read
  • How to automate live data to your website with Python
    Automating the process of fetching and displaying live data ensures that your website remains up-to-date with the latest information from a data source. We will cover the concepts related to this topic, provide examples with proper output screenshots, and outline the necessary steps to achieve autom
    5 min read
  • How to Automate an Excel Sheet in Python?
    Before you read this article and learn automation in Python....let's watch a video of Christian Genco (a talented programmer and an entrepreneur) explaining the importance of coding by taking the example of automation. You might have laughed loudly after watching this video and you surely, you might
    8 min read
  • How to automate system administration with Python
    Python has become one of the most popular programming languages for system administrators due to its simplicity, flexibility, and extensive support for various system management tasks. Whether you're automating repetitive tasks, managing files and directories, or handling user permissions, Python pr
    5 min read
  • Inserting variables to database table using Python
    In this article, we will see how one can insert the user data using variables. Here, we are using the sqlite module to work on a database but before that, we need to import that package. import sqlite3 To see the operation on a database level just download the SQLite browser database.Note: For the d
    3 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences