Generate an array having sum of Euler Totient Function of all elements equal to N Last Updated : 17 Jan, 2022 Comments Improve Suggest changes Like Article Like Report Given a positive integer N, the task is to generate an array such that the sum of the Euler Totient Function of each element is equal to N. Examples: Input: N = 6Output: 1 6 2 3 Input: N = 12Output: 1 12 2 6 3 4 Approach: The given problem can be solved based on the divisor sum property of the Euler Totient Function, i.e., The Euler Totient Function of a number N< is the number of integers from 1 to N that gives GCD(i, N) as 1 and a number N can be represented as the summation of the Euler Totient Function values of all the divisors of N.Therefore, the idea is to find the divisors of the given number N as the resultant array. Below is the implementation of the above approach: C++ // C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to construct the array such // the sum of values of Euler Totient // functions of all array elements is N void constructArray(int N) { // Stores the resultant array vector<int> ans; // Find divisors in sqrt(N) for (int i = 1; i * i <= N; i++) { // If N is divisible by i if (N % i == 0) { // Push the current divisor ans.push_back(i); // If N is not a // perfect square if (N != (i * i)) { // Push the second divisor ans.push_back(N / i); } } } // Print the resultant array for (auto it : ans) { cout << it << " "; } } // Driver Code int main() { int N = 12; // Function Call constructArray(N); return 0; } Java // Java program for the above approach import java.util.*; class GFG{ // Function to construct the array such // the sum of values of Euler Totient // functions of all array elements is N static void constructArray(int N) { // Stores the resultant array ArrayList<Integer> ans = new ArrayList<Integer>(); // Find divisors in sqrt(N) for(int i = 1; i * i <= N; i++) { // If N is divisible by i if (N % i == 0) { // Push the current divisor ans.add(i); // If N is not a // perfect square if (N != (i * i)) { // Push the second divisor ans.add(N / i); } } } // Print the resultant array for(int it : ans) { System.out.print(it + " "); } } // Driver Code public static void main(String[] args) { int N = 12; // Function Call constructArray(N); } } // This code is contributed by splevel62 Python3 # Python3 program for the above approach from math import sqrt # Function to construct the array such # the sum of values of Euler Totient # functions of all array elements is N def constructArray(N): # Stores the resultant array ans = [] # Find divisors in sqrt(N) for i in range(1, int(sqrt(N)) + 1, 1): # If N is divisible by i if (N % i == 0): # Push the current divisor ans.append(i) # If N is not a # perfect square if (N != (i * i)): # Push the second divisor ans.append(N / i) # Print the resultant array for it in ans: print(int(it), end = " ") # Driver Code if __name__ == '__main__': N = 12 # Function Call constructArray(N) # This code is contributed by ipg2016107 C# // C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to construct the array such // the sum of values of Euler Totient // functions of all array elements is N static void constructArray(int N) { // Stores the resultant array List<int> ans = new List<int>(); // Find divisors in sqrt(N) for(int i = 1; i * i <= N; i++) { // If N is divisible by i if (N % i == 0) { // Push the current divisor ans.Add(i); // If N is not a // perfect square if (N != (i * i)) { // Push the second divisor ans.Add(N / i); } } } // Print the resultant array foreach(int it in ans) { Console.Write(it + " "); } } // Driver Code public static void Main() { int N = 12; // Function Call constructArray(N); } } // This code is contributed by ukasp JavaScript <script> // javascript program for the above approach // Function to construct the array such // the sum of values of Euler Totient // functions of all array elements is N function constructArray(N) { // Stores the resultant array var ans = []; // Find divisors in sqrt(N) for(var i = 1; i * i <= N; i++) { // If N is divisible by i if (N % i == 0) { // Push the current divisor ans.push(i); // If N is not a // perfect square if (N != (i * i)) { // Push the second divisor ans.push(N / i); } } } // Print the resultant array document.write(ans); } // Driver Code var N = 12; // Function Call constructArray(N); // This code contributed by shikhasingrajput </script> Output: 1 12 2 6 3 4 Time Complexity: O(√N)Auxiliary Space: O(N) Comment More infoAdvertise with us Next Article Count all possible values of K less than Y such that GCD(X, Y) = GCD(X+K, Y) K kiranu941 Follow Improve Article Tags : Algorithms Mathematical Technical Scripter DSA Arrays Technical Scripter 2020 divisors euler-totient +4 More Practice Tags : AlgorithmsArraysMathematical Similar Reads Euler Totient for Competitive Programming What is Euler Totient function(ETF)?Euler Totient Function or Phi-function for 'n', gives the count of integers in range '1' to 'n' that are co-prime to 'n'. It is denoted by \phi(n) .For example the below table shows the ETF value of first 15 positive integers: 3 Important Properties of Euler Totie 8 min read Euler's Totient Function Given an integer n, find the value of Euler's Totient Function, denoted as Φ(n). The function Φ(n) represents the count of positive integers less than or equal to n that are relatively prime to n. Euler's Totient function Φ(n) for an input n is the count of numbers in {1, 2, 3, ..., n-1} that are re 10 min read Count of non co-prime pairs from the range [1, arr[i]] for every array element Given an array arr[] consisting of N integers, the task for every ith element of the array is to find the number of non co-prime pairs from the range [1, arr[i]]. Examples: Input: N = 2, arr[] = {3, 4}Output: 2 4Explanation: All non-co-prime pairs from the range [1, 3] are (2, 2) and (3, 3).All non- 13 min read Generate an array having sum of Euler Totient Function of all elements equal to N Given a positive integer N, the task is to generate an array such that the sum of the Euler Totient Function of each element is equal to N. Examples: Input: N = 6Output: 1 6 2 3 Input: N = 12Output: 1 12 2 6 3 4 Approach: The given problem can be solved based on the divisor sum property of the Euler 5 min read Count all possible values of K less than Y such that GCD(X, Y) = GCD(X+K, Y) Given two integers X and Y, the task is to find the number of integers, K, such that gcd(X, Y) is equal to gcd(X+K, Y), where 0 < K <Y. Examples: Input: X = 3, Y = 15Output: 4Explanation: All possible values of K are {0, 3, 6, 9} for which GCD(X, Y) = GCD(X + K, Y). Input: X = 2, Y = 12Output: 8 min read Count of integers up to N which are non divisors and non coprime with N Given an integer N, the task is to find the count of all possible integers less than N satisfying the following properties: The number is not coprime with N i.e their GCD is greater than 1.The number is not a divisor of N. Examples: Input: N = 10 Output: 3 Explanation: All possible integers which ar 5 min read Find the number of primitive roots modulo prime Given a prime p . The task is to count all the primitive roots of p .A primitive root is an integer x (1 <= x < p) such that none of the integers x - 1, x2 - 1, ...., xp - 2 - 1 are divisible by p but xp - 1 - 1 is divisible by p . Examples: Input: P = 3 Output: 1 The only primitive root modul 5 min read Compute power of power k times % m Given x, k and m. Compute (xxxx...k)%m, x is in power k times. Given x is always prime and m is greater than x. Examples: Input : 2 3 3 Output : 1 Explanation : ((2 ^ 2) ^ 2) % 3 = (4 ^ 2) % 3 = 1 Input : 3 2 3 Output : 0 Explanation : (3^3)%3 = 0 A naive approach is to compute the power of x k time 15+ min read Primitive root of a prime number n modulo n Given a prime number n, the task is to find its primitive root under modulo n. The primitive root of a prime number n is an integer r between[1, n-1] such that the values of r^x(mod n) where x is in the range[0, n-2] are different. Return -1 if n is a non-prime number. Examples: Input : 7 Output : S 15 min read Euler's Totient function for all numbers smaller than or equal to n Euler's Totient function ?(n) for an input n is the count of numbers in {1, 2, 3, ..., n} that are relatively prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1. For example, ?(4) = 2, ?(3) = 2 and ?(5) = 4. There are 2 numbers smaller or equal to 4 that are relatively pri 13 min read Like